[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 73 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
672
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 08/16(土)07:30 ID:psDSFTci(2/9) AAS
つづき

Weaker systems
Paul Cohen showed that ACω is not provable in Zermelo–Fraenkel set theory (ZF) without the axiom of choice.[6] However, some countably infinite sets of non-empty sets can be proven to have a choice function in ZF without any form of the axiom of choice.
For example, Vω∖{∅} has a choice function, where Vω is the set of hereditarily finite sets, i.e. the first set in the Von Neumann universe of non-finite rank.
The choice function is (trivially) the least element in the well-ordering.
Another example is the set of proper and bounded open intervals of real numbers with rational endpoints.
ZF+ACω suffices to prove that the union of countably many countable sets is countable. These statements are not equivalent: Cohen's First Model supplies an example where countable unions of countable sets are countable, but where ACω does not hold.[7]
省13
865
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 08/20(水)16:34 ID:n7uBTsIt(4/5) AAS
>>681
>整列可能定理の証明の方法で可算集合Xの整列順序を作るには選択関数f:2^X-{}→Xが必要。且つ|2^X-{}|は非可算。よって可算選択公理は役に立たない。
>一方で全単射g:N→Xが存在するからg(0)<g(1)<・・・で整列順序<を定義可能。(よって整列可能定理の証明の方法を取る必要が無い。よっていかなるタイプの選択公理も不要。)

中高一貫生も来る可能性があるので、赤ペン先生をしておく
まず
(参考)>>671-672より再録
1)下記 可算選択公理 Axiom of countable choice ACω は
省25
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.952s*