Inter-universal geometry と ABC予想 (応援スレ) 73 (981レス)
Inter-universal geometry と ABC予想 (応援スレ) 73 http://rio2016.5ch.net/test/read.cgi/math/1753000052/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
902: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/21(木) 11:21:50.16 ID:7NN/U5QB つづき https://en.wikipedia.org/wiki/Axiom_of_dependent_choice Axiom of dependent choice Relation with other axioms It is possible to generalize the axiom to produce transfinite sequences. If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice. <仏版のgoogle英訳> https://fr.wikipedia.org/wiki/Axiome_du_choix_d%C3%A9pendant Axiom of dependent choice Relationships with other axioms Unlike AC in its full formulation, DC is insufficient (in ZF) to demonstrate that there exists an unmeasurable set of reals , or that there exists a set of reals which does not have the Baire property or without the perfect set property . The axiom of countable choice is easily deduced from the axiom of dependent choice (consider, for a sequence ( A n ) of non-empty sets, the relation R on ⋃n∈N ∏k<n Ak defined by: sRt if s is equal to t minus its last element). It is much more difficult to prove that this implication is strict [ 4 ] . Notes and references 2.This statement is equivalent to that of (en) Thomas Jech , Set Theory: The Third Millennium Edition, revised and expanded , Springer ,2003, 772 p. ( ISBN 978-3-540-44085-7 , online presentation [ archive ] ) , p. 50, moving from one relationship to the reciprocal relationship . https://books.google.com/books?id=WTAl997XDb4C&pg=PA50 4.(in) Thomas J. Jech, The Axiom of Choice , Dover ,2013( 1st ed . 1973) ( read online [ archive ] ) , p. 130, Th. 8.12. https://en.wikipedia.org/wiki/Axiom_of_countable_choice Axiom of countable choice (可算選択公理) The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n∈N, there exists a function f with domain N such that f(n)∈A(n) for every n∈N. <仏語> https://fr.wikipedia.org/wiki/Axiome_du_choix_d%C3%A9nombrable Axiome du choix dénombrable <google英訳> Axiom of Countable Choice The axiom of countable choice , denoted AC ω , is an axiom of set theory which states that every countable set of non- empty sets must have a choice function , that is, for every sequence ( A ( n )) of non-empty sets, there exists a function f defined on N (the set of natural numbers ) such that f ( n ) ∈ A ( n ) for all n ∈ N. https://ja.wikipedia.org/wiki/%E5%8F%AF%E7%AE%97%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 可算選択公理 (説明で " f ( n ) ∈ A ( n ) for all n ∈ N"に触れていないからダメ) (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1753000052/902
907: 132人目の素数さん [] 2025/08/21(木) 13:47:38.21 ID:LISQrQEJ >>902 >説明で " f ( n ) ∈ A ( n ) for all n ∈ N"に触れていないからダメ 「任意の無限集合がデデキント無限であることなどが証明できる」と、証明できる事しか述べてないのに証明の内容の一部が無いからダメとトンチンカンな言いがかりつけるおまえがダメ http://rio2016.5ch.net/test/read.cgi/math/1753000052/907
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.054s