Inter-universal geometry と ABC予想 (応援スレ) 73 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 73 http://rio2016.5ch.net/test/read.cgi/math/1753000052/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは1000を超えました。
次スレ検索
歴削→次スレ
栞削→次スレ
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
759: 132人目の素数さん [] 2025/08/17(日) 20:38:52.62 ID:ri9WPA52 >>757 >テーラー展開 は無限項の和■ww ;p) はい、大間違いです。 テイラー展開は無限級数であり、無限級数は有限部分和列の極限であって無限項の和ではない。 無限級数は無限項の和とか言ってたら高校生に笑われるぞw てか既に何度も教えてあげてるんだけど、君、言葉が通じないの? 言語障害は病気だから病院行けよ https://ja.wikipedia.org/wiki/%E3%83%86%E3%82%A4%E3%83%A9%E3%83%BC%E5%B1%95%E9%96%8B 数学においてテイラー級数(テイラーきゅうすう、英: Taylor series)は、関数のある一点での導関数の値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開(テイラーてんかい)という。 https://ja.wikipedia.org/wiki/%E7%B7%8F%E5%92%8C 有限和の場合を拡張して、可算無限個の元の列 x1,x2, … に対しても総和を定義することができる。これを特に無限和 (infinite sum)、無限級数 (infinite series) あるいは単に級数(きゅうすう、series)と呼ぶ。総和と同様に、部分和をとる操作を行う。しかし、この操作は、元が有限個である場合と違って有限回で終了しない。ここで、部分和 si の極限を級数の値とする(ただし、チェザロ和などのように値の算出法が異なる総和法も存在する)。部分和の列 si が収束または発散することを以って、級数は収束 (converge) あるいは発散 (diverge) するという。与えられた列から作られる級数が収束するとき、その級数の値をもとの列の和と呼ぶ。 http://rio2016.5ch.net/test/read.cgi/math/1753000052/759
778: 132人目の素数さん [] 2025/08/18(月) 18:37:21.80 ID:NRTT2lqv >>774 君、>>759が読めないの? 「部分和 si の極限を級数の値とする」と書かれていて「無限項の和を級数の値とする」とは書かれてないよ。 言語障害だから読めない? 病院へGO http://rio2016.5ch.net/test/read.cgi/math/1753000052/778
785: 132人目の素数さん [] 2025/08/18(月) 23:57:47.64 ID:NRTT2lqv >>784 君、>>759が読めないの? 「部分和 si の極限を級数の値とする」と書かれていて「無限項の和を級数の値とする」とは書かれてないよ。 言語障害だから読めない? 病院へGO http://rio2016.5ch.net/test/read.cgi/math/1753000052/785
792: 132人目の素数さん [] 2025/08/19(火) 08:18:31.48 ID:0Rl6AIyy >>788-789 君さあ、大量コピペでごまかすのやめない? いくらコピペしても君の嘘デタラメな持論が正しくなることはないんだから 一方>>759は最小限のコピペで君の持論が嘘デタラメであることを反論の余地無く示している コピペってのはこうやるんだよ 分かったかい? コピペ小僧君 http://rio2016.5ch.net/test/read.cgi/math/1753000052/792
794: 132人目の素数さん [sage] 2025/08/19(火) 09:03:31.54 ID:wEZZRo6q >>748 >無限級数は無限項の和ではありません。有限項の和の列の極限です。 >>757 >ふっふ、ほっほ >背理法を使っているのは、おれだよ オレオレオレ!w >指数関数 g(x)=e^(x)のテーラー展開 >e^(x)=Σ n=0〜∞ 1/n! x^n >が有限和だとすると >複素指数函数公式 >z = x + yi(x, y は実数)(i は虚数単位)に対して、 >exp(x+iy)=e^x(cos y + isin y) [2][3] >が成立しなくなる >それはまずいよね >よって背理法により >指数関数 g(x)=e^(x)のテーラー展開 >は無限項の和 高卒◆yH25M02vWFhP は背理法も正しく使えず 指数関数 g(x)=e^(x)のテーラー展開は 有限和か有限和でないかのいずれかである は正しいが 有限和か無限和のいずれかである は誤り(笑) >>758 >こいつ >”無限級数は無限項の和”を、必死で否定しようとしているよ >そんな考えだから 数学科でオチコボレになるんじゃね? >”無限級数は有限項の和ではない”だろ 大学1年の一般教養の微分積分を 落第した落ちこぼれは、高卒◆yH25M02vWFhP だろ 有限和でない⇒無限項の和 は、いえない ナイーブな素人はウソを平気で盲信するから 大学数学が初歩から全く理解できない >>759 >無限級数は有限部分和列の極限であって無限項の和ではない。 高卒◆yH25M02vWFhP は 実数の定義も 数列の極限の定義も 関数の連続性の定義も 全然理解できんから 大学1年の一般教養の微分積分を落第 高校の論理からやり直せ http://rio2016.5ch.net/test/read.cgi/math/1753000052/794
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s