フェルマーの最終定理の証明 (559レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
479: 与作 [] 2025/07/23(水) 18:27:41.46 ID:TwiO87mj nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。 (2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)はk=1のとき、成立たないので、k=1以外でも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/479
480: 与作 [] 2025/07/24(木) 07:54:51.65 ID:Y8+jg/HN n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき、(y-1)=2、(y+1)=xとなる。 (2)はk=1のとき、成立つので、k=1以外でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/480
481: 与作 [] 2025/07/24(木) 12:37:27.82 ID:Y8+jg/HN (1)を(y-1)(y+1)=k2x/k…(2)とおく。 k=1、y=3、x=4 k=2、y=5、x=12 http://rio2016.5ch.net/test/read.cgi/math/1745314067/481
482: 与作 [] 2025/07/24(木) 15:28:55.70 ID:Y8+jg/HN n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。 (2)はk=1のとき、(y-1)=3、(y^2+y+1)=(x^2+x)とならない。 (2)はk=1のとき、成立たないので、k=1以外でも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/482
483: 与作 [] 2025/07/24(木) 19:08:17.13 ID:Y8+jg/HN nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。 (2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)はk=1のとき、成立たないので、k=1以外でも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/483
484: 132人目の素数さん [] 2025/07/24(木) 20:39:36.77 ID:WNOov+Jn L[cos(at)]=∫_0^∞??e^(-st) cos(at) ? dt=lim┬(b→∞)??∫_0^b??e^(-st) cos(at) ? dt? ∫??e^ax cos(bx) ? dx=∫??e^ax/(a^2+b^2 ) acos(bx)+bsin(bx) ? dx lim┬(b→∞)??∫_0^b??e^(-st) cos(at) ? dt? =lim┬(b→∞)??[e^(-st)/(s^2+a^2 ) (?( @?-scos??(at)+asin(at)@ ))]_0^b ? =lim┬(b→∞)?(e^(-sb)/(s^2+a^2 ) (asin?(ab)-scos(ab))-1/(s^2+a^2 ) (-s)) =e^(-sb)/(s^2+a^2 ) lim┬(b→∞)?(asin?(ab)-scos(ab))+s/(s^2+a^2 ) =1/(s^2+a^2 ) lim┬(b→∞)?((asin?(ab)-scos(ab))/e^sb )+s/(s^2+a^2 ) Asin?(ab)-Bcos(ab)=√(A^2+B^2 ) sin(ab-θ) |(asin?(ab)-scos(ab))/e^sb |=(√(s^2+a^2 ) |sin(ab-θ)|)/e^sb ?√(s^2+a^2 )/e^sb lim┬(b→∞)?((asin?(ab)-scos(ab))/e^sb )=0 ∴L[cos(at)]=s/(s^2+a^2 ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/484
485: 132人目の素数さん [] 2025/07/24(木) 20:40:01.67 ID:WNOov+Jn E(t)=Ri(t)+1/C ∫?i(t) dt i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t) E(t)=R dq(t)/dt+q(t)/C L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s) L[q(t)/C]=Q(s)/C L[E]=E/s E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C) Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR) 1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs s=0⇒A/CR=1 A=CR s=-1/CR⇒-B 1/CR=1 B=-CR Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR) L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/485
486: 132人目の素数さん [] 2025/07/24(木) 21:01:46.45 ID:WNOov+Jn Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12) x=e^logx 2=e^log2 2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2) x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx) (2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14) 2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0 √(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1 x=√2n?12 、つまりn?72 37?n?71⇒n?73?2n 19?n?36⇒n?37?2n 10?n?18⇒n?19?2n 6?n?9⇒n?11?2n n=4,5⇒n?7?2n n=3⇒3?6?6 n=2⇒2?3?4 n=1⇒1?2?2 http://rio2016.5ch.net/test/read.cgi/math/1745314067/486
487: 132人目の素数さん [] 2025/07/24(木) 21:02:26.25 ID:WNOov+Jn ∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α) x:0→1 t:α→β x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α) ∫_0^1?x^m (1-x)^n dx =∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt =1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)! ∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx =-1/6 (β-α)^3 m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx =-1/12 (β-α)^4 m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx =(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5 http://rio2016.5ch.net/test/read.cgi/math/1745314067/487
488: 132人目の素数さん [] 2025/07/25(金) 13:17:52.13 ID:5/EpQV9W ?θ/?s=(x ?(y ?(t+?t)-y ?(t))-y ?(x ?(t+?t)-x ?(t)))/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) 1/?r(t+?t)-r(t)? =((x ?(y ?(t+?t)-y ?(t))-y ?(x ?(t+?t)-x ?(t)))/?t)/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) ?t?r(t+?t)-r(t)?^(-1) =(x ? ((y ?(t+?t)-y ?(t)))/?t-y ? ((x ?(t+?t)-x ?(t)))/?t)/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) ?(r(t+?t)-r(t))/?t?^(-1) 1/R=(lim)┬(?t→0)???θ/?s?=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) ? ?r ? ??^(-1) =(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) =(x ?y ?-yx ?)/(x ?^2+y ?^2 )^(3/2) R=(x ?^2+y ?^2 )^(3/2)/(x ?y ?-yx ? ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/488
489: 132人目の素数さん [] 2025/07/25(金) 13:18:13.30 ID:5/EpQV9W b=t×n=1/√(a^2+c^2 ) (■(-asin?(t)@acos?(t)@c))×(■(-cos?(t)@?-sin??(t)@0)) ※外積のスカラー倍 =1/√(a^2+c^2 ) |■(i&j&k@-asin?(t)&acos?(t)&c@-cos?(t)&-sin?(t)&0)| =1/√(a^2+c^2 ) (|■(acos?(t)&c@-sin?(t)&0)|,|■(c&-asin?(t)@0&-cos?(t) )|,|■(-asin?(t)&acos?(t)@-cos?(t)&-sin?(t) )|) =1/√(a^2+c^2 ) (csin?(t), -?c?cos??(t), a) b^' (s)=db/ds=db/dt?dt/ds=1/√(a^2+c^2 ) (?c?cos??(t), csin?(t), 0) 1/√(a^2+c^2 ) =1/(a^2+c^2 ) (?c?cos??(t), csin?(t), 0) b^' (s)=-τn より 1/(a^2+c^2 ) (?c?cos??(t), csin?(t), 0)=-τ(-cos?(t), ?-sin??(t), 0) =τ(cos?(t), sin?(t), 0) 1/(a^2+c^2 ) ?c?cos??(t)=τ cos?(t) τ=c/(a^2+c^2 ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/489
490: 132人目の素数さん [] 2025/07/25(金) 13:18:57.87 ID:5/EpQV9W x+1)^2020=(x+1)^(2?1010)=(x^2+2x+1)^1010 =((x^2+1)+2x)^1010 ((x^2+1)+2x)^1010 =(x^2+1)^1010+1010(x^2+1)^1009 2x+(_1010^ )C_2 (x^2+1)^1008 (2x)^2+ ?+1010(x^2+1) (2x)^1009+(2x)^1010 (2x)^1010以外の項はx^2+1の倍数なのでpを適当な整数とすると ((x^2+1)+2x)^1010=p(x^2+1)+(2x)^1010……? (2x)^1010=(4x^2 )^505=((4x^2+4)-4)^505 ((4x^2+4)-4)^505 =(4x^2+4)^505+505(4x^2+4)^504 (-4)+(_505^ )C_2 (4x^2+4)^1008 (-4)^2+ ?+505(4x^2+4) (-4)^1009+(-4)^1010 (-4)^1010以外の項は4x^2+4の倍数なのでqを適当な整数とすると ((4x^2+4)-4)^505=q(4x^2+4)+(-4)^1010 =4q(x^2+1)+(-2)^505 2^505 =4q(x^2+1)-2^1010……? (x+1)^2020=p(x^2+1)+(2x)^1010 =p(x^2+1)+4q(x^2+1)-2^1010 =(x^2+1)(p+4q)-2^1010 http://rio2016.5ch.net/test/read.cgi/math/1745314067/490
491: 132人目の素数さん [] 2025/07/25(金) 13:20:53.92 ID:5/EpQV9W A=(■(2@3@1)■( 5@ -3@ 8)■( -3@ -1@ 2))→ (■(1@0@0)■( 0@ 1@ 0)■( -7@ 2@ 0)) x=(■(x_1@x_2@x_3 )) f(x)=(■(1@0@0)■( 0@ 1@ 0)■( -7@ 2@ 0))(■(x_1@x_2@x_3 ))=(■(x_1-7x_3@x_2-?2x?_3@0))=(■(1@0@0)) x_1+(■(0@1@0)) x_2+(■(-7@-2@ 0)) x_3 a_1=(■(1@0@0)), a_2=(■(0@1@0)), a_3= (■(-7@-2@ 0)) sa_1+ta_2=s(■(1@0@0))+t(■(0@1@0))=(■(s@t@ 0))=(■(0@0@0)) sa_1+ta_3=s(■(1@0@0))+t(■(-7@-2@ 0))=(■(s-7t@-2t@ 0))=(■(0@0@0)) sa_2+ta_3=s(■(0@1@0))+t(■(-7@-2@ 0))=(■(-7t@s-2t@ 0))=(■(0@0@0)) http://rio2016.5ch.net/test/read.cgi/math/1745314067/491
492: 132人目の素数さん [] 2025/07/25(金) 13:21:50.56 ID:5/EpQV9W a_1= [■(0@1@1)],a_2= [■(1@0@1)],a_3= [■(1@1@0)] a_1→u_1 u_1=a_1/?a_1 ? =a_1/√(1+1)=1/√2 [■(0@1@1)] a_2→u_2 b_1=(a_2?u_1 ) u_1=(1/√2 [■(1@0@1)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)] b_2=a_2-(a_2?u_1 ) u_1 =[■(1@0@1)]-1/2 [■(0@1@1)]=[■(1-0@0-1/2@1-1/2)]=[■(1@-1/2@1/2)]=1/2 [■(2@-1@1)] ?b_2 ?=1/2 √(4+1+1)=√6/2 u_2=b_2/?b_2 ? =2/√6 1/2 [■(2@-1@1)]=1/√6 [■(2@-1@1)] a_3→u_3 c_1=(a_3?u_1 ) u_1=(1/√2 [■(1@1@0)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)] http://rio2016.5ch.net/test/read.cgi/math/1745314067/492
493: 132人目の素数さん [] 2025/07/26(土) 14:44:08.67 ID:KWQfeJIh 2021=42?48+5≡5 (mod 42) 2021^(2021^2021 )≡5^(2021^2021 ) (mod 42) t=2021^2021, 2021^t≡5^t (mod 42) 5^3≡125≡42?3-1≡ -1 (mod 42) 5^6≡ 1 (mod 42) t=6k+r⇔t≡r (mod 6) 5^t=5^(6k+r)≡5^r 5^(2021^2021 )≡5^t (mod 42) 2021≡-1 (mod 6) t=2021^2021≡(-1)^2021≡-1≡5 (mod 6) 5^5=3125=74?42+17≡17 (mod 42) http://rio2016.5ch.net/test/read.cgi/math/1745314067/493
494: 132人目の素数さん [] 2025/07/26(土) 14:45:55.48 ID:KWQfeJIh 42=2?3?7 5≡1, 5^(2021^2021 )≡ 1^(2021^2021 )≡1 (mod 2) ・・・・・・・・・・? 5≡-1, 5^(2021^2021 )≡ (-1)^(2021^2021 )≡-1≡2 (mod 3)・・・・・・・・・・? 5^1≡5, 5^(2021^2021 ) (mod 7) 5^(7-1)≡5^6≡1 (mod 7) t=2021^2021, 2021^t≡5^t (mod 7) 5^t= 5^(6k+r)=5^6k 2^r≡5^r (mod 7) 5^(2021^2021 )≡5^t (mod 7) 2021≡-1 (mod 6) t=2021^2021≡(-1)^2021≡-1≡5 (mod 6) 5^5=3125=446?7+3≡3 (mod 7) 5^1≡5, 5^2≡4 (mod 7) 5^3≡20≡6 (mod 7) 5^5=5^2 5^3≡24≡3 (mod 7) ∴2021^(2021^2021 )≡5^(2021^2021 )≡5^5 ≡3 (mod 7)・・・・・・・・・・? x≡ 2021^(2021^2021 ) とおくと x≡1 (mod 2) ,21x≡21 (mod 42) ・・・・・・・・・・? x≡2 (mod 3) ,14x≡28 (mod 42) ・・・・・・・・・・? x≡3 (mod 7) , 6x≡18 (mod 42) ・・・・・・・・・・? 41x≡67 (mod 42) 42x≡42 (mod 42) ∴x≡-25≡17 (mod 42) http://rio2016.5ch.net/test/read.cgi/math/1745314067/494
495: 132人目の素数さん [] 2025/07/26(土) 14:46:30.86 ID:KWQfeJIh M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx? M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) ) =-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2 M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx =1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx =1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt (x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2 -∞<x?∞ ⇒-∞<t?∞ http://rio2016.5ch.net/test/read.cgi/math/1745314067/495
496: 与作 [] 2025/07/26(土) 15:47:36.24 ID:A7atEaVc n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき、(y-1)=2、(y+1)=xとなる。 (2)はk=1のとき、成立つので、k=1以外でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/496
497: 与作 [] 2025/07/26(土) 17:36:09.64 ID:A7atEaVc (1)を(y-1)(y+1)=k2x/k…(2)とおく。 k=1、y=3、x=4 k=2、y=5、x=12 http://rio2016.5ch.net/test/read.cgi/math/1745314067/497
498: 与作 [] 2025/07/26(土) 20:29:26.71 ID:A7atEaVc n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。 (2)はk=1のとき、(y-1)=3、(y^2+y+1)=(x^2+x)とならない。 (2)はk=1のとき、成立たないので、k=1以外でも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/498
499: 与作 [] 2025/07/27(日) 08:15:36.50 ID:p6uh5pZX nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。 (2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)はk=1のとき、成立たないので、k=1以外でも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/499
500: 132人目の素数さん [] 2025/07/27(日) 12:25:31.20 ID:PdhNF7gV ∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α) x:0→1 t:α→β x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α) ∫_0^1?x^m (1-x)^n dx =∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt =1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)! ∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx =-1/6 (β-α)^3 m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx =-1/12 (β-α)^4 m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx =(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5 http://rio2016.5ch.net/test/read.cgi/math/1745314067/500
501: 132人目の素数さん [] 2025/07/27(日) 12:25:49.85 ID:PdhNF7gV Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12) x=e^logx 2=e^log2 2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2) x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx) ここで (2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14) 2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0 √(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1 x=√2n?12 、つまりn?72 のとき(#15)は成り立つ。 37?n?71⇒n?73?2n 19?n?36⇒n?37?2n 10?n?18⇒n?19?2n 6?n?9⇒n?11?2n n=4,5⇒n?7?2n n=3⇒3?6?6 n=2⇒2?3?4 n=1⇒1?2?2 http://rio2016.5ch.net/test/read.cgi/math/1745314067/501
502: 132人目の素数さん [] 2025/07/27(日) 12:26:15.88 ID:PdhNF7gV L[y^'' (t)]=s^2 Y(s)-sy(0)-y^' (0) =s^2 Y(s)-2s-4 L[?4y?^' (t)]=4(sY(s)-y(0))=4sY(s)-8 L[4y(t)]=4Y(s) L[y^'' (t)]-L[?4y?^' (t)]+ L[4y(t)] =s^2 Y(s)-2s-4-4sY(s)+8+4Y(s) =Y(s)(s^2-4s+4)-2s+4 L[6te^2t ]=6L[t^1 e^2t ]=6 1!/(s-2)^2 =6/(s-2)^2 ( L[t^n e^at ]=n!/(s-a)^(n+1) ) Y(s)(s^2-4s+4)-2s+4=6/(s-2)^2 Y(s) (s-2)^2-2s+4=6/(s-2)^2 Y(s) (s-2)^2=6/(s-2)^2 +2(s-2) Y(s)=6/(s-2)^4 +2/(s-2) Y(s)= F(s-2)とおくと F(s-2)=6/(s-2)^4 +2/(s-2) ∴F(s)=6/s^4 +2/s=3!/s^(3+1) +2/s y(t)=L^(-1)[F(s-2)]=e^2t L^(-1) [F(s)] ( L^(-1) [F(s-a)]=e^at L^(-1) [F(s)]) =e^2t L^(-1) [3!/s^(3+1) +2/s] (L[t^n ]=n!/s^(n+1) ) =e^2t (t^3+2) http://rio2016.5ch.net/test/read.cgi/math/1745314067/502
503: 与作 [] 2025/07/27(日) 14:45:06.09 ID:p6uh5pZX n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき、(y-1)=2、(y+1)=xとなる。 (2)はk=1のとき、成立つので、k=1以外でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/503
504: 与作 [] 2025/07/27(日) 15:16:28.12 ID:p6uh5pZX n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)と(y-1)(y+1)=k2x/k…(3)は同じ。 (2)が成り立つので、(3)も成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/504
505: 与作 [] 2025/07/27(日) 15:23:19.79 ID:p6uh5pZX n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)と(y-1)(y^2+y+1)=k3(x^2+x)/k…(3)は同じ。 (2)が成り立たないので、(3)も成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/505
506: 与作 [] 2025/07/27(日) 15:28:50.77 ID:p6uh5pZX nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)と(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(3)は同じ。 (2)が成り立たないので、(3)も成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/506
507: 与作 [] 2025/07/27(日) 15:35:04.87 ID:p6uh5pZX n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)が成り立つならば、(y-1)(y+1)=k2x/k…(3)も成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/507
508: 与作 [] 2025/07/27(日) 15:38:20.95 ID:p6uh5pZX n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)が成り立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/k…(3)も成り立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/508
509: 与作 [] 2025/07/27(日) 15:41:40.42 ID:p6uh5pZX nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)が成り立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成り立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/509
510: 与作 [] 2025/07/27(日) 15:43:25.27 ID:p6uh5pZX n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)が成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/510
511: 与作 [] 2025/07/27(日) 15:45:08.72 ID:p6uh5pZX n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)が成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/511
512: 与作 [] 2025/07/27(日) 15:46:26.13 ID:p6uh5pZX nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)が成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/512
513: 132人目の素数さん [] 2025/07/27(日) 20:17:53.38 ID:PdhNF7gV 2=2?3?7 5≡1, 5^(2021^2021 )≡ 1^(2021^2021 )≡1 (mod 2) ・・・・・・・・・・? 5≡-1, 5^(2021^2021 )≡ (-1)^(2021^2021 )≡-1≡2 (mod 3)・・・・・・・・・・? 5^1≡5, 5^(2021^2021 ) (mod 7) 5^(7-1)≡5^6≡1 (mod 7) t=2021^2021, 2021^t≡5^t (mod 7) 5^t= 5^(6k+r)=5^6k 2^r≡5^r (mod 7) 5^(2021^2021 )≡5^t (mod 7) 2021≡-1 (mod 6) t=2021^2021≡(-1)^2021≡-1≡5 (mod 6) 5^5=3125=446?7+3≡3 (mod 7) 5^1≡5, 5^2≡4 (mod 7) 5^3≡20≡6 (mod 7) 5^5=5^2 5^3≡24≡3 (mod 7) ∴2021^(2021^2021 )≡5^(2021^2021 )≡5^5 ≡3 (mod 7)・・・・・・・・・・? x≡ 2021^(2021^2021 ) とおくと x≡1 (mod 2) ,21x≡21 (mod 42) ・・・・・・・・・・? x≡2 (mod 3) ,14x≡28 (mod 42) ・・・・・・・・・・? x≡3 (mod 7) , 6x≡18 (mod 42) ・・・・・・・・・・? 41x≡67 (mod 42) 42x≡42 (mod 42) ∴x≡-25≡17 (mod 42) http://rio2016.5ch.net/test/read.cgi/math/1745314067/513
514: 132人目の素数さん [] 2025/07/27(日) 20:18:14.07 ID:PdhNF7gV (x+1)^2020=(x+1)^(2?1010)=(x^2+2x+1)^1010 =((x^2+1)+2x)^1010 ((x^2+1)+2x)^1010 =(x^2+1)^1010+1010(x^2+1)^1009 2x+(_1010^ )C_2 (x^2+1)^1008 (2x)^2+ ?+1010(x^2+1) (2x)^1009+(2x)^1010 (2x)^1010以外の項はx^2+1の倍数なのでpを適当な整数とすると ((x^2+1)+2x)^1010=p(x^2+1)+(2x)^1010……? (2x)^1010=(4x^2 )^505=((4x^2+4)-4)^505 ((4x^2+4)-4)^505 =(4x^2+4)^505+505(4x^2+4)^504 (-4)+(_505^ )C_2 (4x^2+4)^1008 (-4)^2+ ?+505(4x^2+4) (-4)^1009+(-4)^1010 (-4)^1010以外の項は4x^2+4の倍数なのでqを適当な整数とすると ((4x^2+4)-4)^505=q(4x^2+4)+(-4)^1010 =4q(x^2+1)+(-2)^505 2^505 =4q(x^2+1)-2^1010……? ??より (x+1)^2020=p(x^2+1)+(2x)^1010 =p(x^2+1)+4q(x^2+1)-2^1010 =(x^2+1)(p+4q)-2^1010 http://rio2016.5ch.net/test/read.cgi/math/1745314067/514
515: 132人目の素数さん [] 2025/07/27(日) 20:19:23.36 ID:PdhNF7gV ∂u/∂t=(∂u^2)/(∂x^2 ) (0<x<1, t>0) u_x (0,t)=u_x (1,t)=0 境界条件(断熱条件) u(x,0)=δ(x-1/2) 初期条件 u(x,t)=X(x)T(t) ∂u/∂t=XT^' ∂u/∂x=TX^' (∂u^2)/(∂x^2 )=∂/∂x TX^'=TX^'' XT^'= TX^'' T^'/T=X^''/X (T^' (t))/T(t) =(X^'' (x))/X(x) T^'/T=X^''/X=μ X^''/X=μ X^''-μX=0 ??? T^'/T=μ T^'=μT ??? http://rio2016.5ch.net/test/read.cgi/math/1745314067/515
516: 132人目の素数さん [] 2025/07/27(日) 20:20:25.66 ID:PdhNF7gV x ?+ax ?+bx=0 ??? λ^2+aλ+b=0 λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt)) λ^2-μ=0 0^2-4(-μ)=4μ (?@)μ>0のときλ=±√μなので X= C_1 e^(√μ x)+C_2 e^(-√μ x) X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x) 境界条件 u_x (0,t)=u_x (1,t)=0より u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0 μ>0なので C_1-C_2=0 C_1=C_2 u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0 C_1=C_2なので (C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0 μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0 (※e^√μ=e^(-√μ)となるのはμ=0のときだけ) X(x)=0 ∴u(x,t)=X(x)T(t)=0 (?A)μ=0のとき重解なので X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x 境界条件 u_x (0,t)=u_x (1,t)=0より X^' (0)=X^' (1)= C_2=0 X=C_1 http://rio2016.5ch.net/test/read.cgi/math/1745314067/516
517: 132人目の素数さん [] 2025/07/27(日) 20:22:15.65 ID:PdhNF7gV y''+6y'+10y=2sin(x). D^2+6D+10=0. D=-3±i (D^2+6D+10)y=2sin(x) (D-(-3+i))(D-(-3-i))y=i(e^(-ix)-e^ix) y=1/(D-(-3+i))∙1/(D-(-3-i)) i(e^(-ix)-e^ix) a=-3+i, b = -3-i, f(x)=i(e^(-ix)-e^ix) と置くと y=1/(D-a)∙1/(D-b) f(x)=1/(D-b)∙1/(D-a) f(x) =1/(D-b) e^ax 1/D e^(-ax) f(x)=1/(D-b) e^ax ∫▒〖e^(-ax) f(x)〗 dx =e^bx 1/D e^(-bx) e^ax ∫▒〖e^(-ax) f(x)〗 dx =e^bx 1/D e^(a-b)x ∫▒〖e^(-ax) f(x)〗 dx =e^bx ∫▒(e^(a-b)x ∫▒〖e^(-ax) f(x)〗 dx) dx =e^(-(3+i)x) ∫▒(e^2ix ∫▒〖e^((3-i)x) i(e^(-ix)-e^ix)〗 dx) dx =e^(-(3+i)x) ∫▒(〖ie〗^2ix ∫▒〖e^((3-2i)x)-e^3x 〗 dx) dx =e^(-(3+i)x) i∫▒e^2ix (e^((3-2i)x)/(3-2i)-e^3x/3+A)dx =e^(-(3+i)x) i∫▒〖e^3x/(3-2i)-e^((3+2i)x)/3+A〗 e^2ix dx =e^(-(3+i)x) (〖ie〗^3x/(3(3-2i))-〖ie〗^((3+2i)x)/(3(3+2i))+A (i2e^2ix)/2i+B) =e^(-ix) e^(-3x) ((ie^3x)/(3(3-2i))-(〖ie〗^2ix e^3x)/(3(3+2i))+Ae^2ix+B) =e^(-ix) (i/(3(3-2i))-〖ie〗^2ix/(3(3+2i))+Ae^((2i-3)x)+Be^(-3x) ) =(ie^(-ix))/(3(3-2i))-(ie^ix)/(3(3+2i))+Ae^((i-3)x)+Be^(-(3+i)x) =i (3+2i)/3∙(cosx-isinx)/13-i (3-2i)/3∙(cosx+isinx)/13+e^(-3x) (Ae^ix+Be^(-ix)) =i (4icosx-6isinx)/39+e^(-3x) (Acosx+iAsinx+Bcosx-iBsinx) =(-4cosx+6sinx)/39+e^(-3x) ((A+B)cosx+i(A-B)sinx) =2sinx/13-4cosx/39+e^(-3x) (C_1 cosx+C_2 sinx) http://rio2016.5ch.net/test/read.cgi/math/1745314067/517
518: 与作 [] 2025/07/27(日) 20:30:59.69 ID:p6uh5pZX n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)が成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/518
519: 与作 [] 2025/07/27(日) 20:32:14.02 ID:p6uh5pZX n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)が成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/519
520: 与作 [] 2025/07/27(日) 20:33:05.30 ID:p6uh5pZX nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)が成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/520
521: 132人目の素数さん [] 2025/07/28(月) 09:41:28.53 ID:Vsf8XHSj ∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α) x:0→1 t:α→β x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α) ∫_0^1?x^m (1-x)^n dx =∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt =1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)! ∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx =-1/6 (β-α)^3 m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx =-1/12 (β-α)^4 m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx =(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5 http://rio2016.5ch.net/test/read.cgi/math/1745314067/521
522: 132人目の素数さん [] 2025/07/28(月) 09:41:50.77 ID:Vsf8XHSj L[y^'' (t)]=s^2 Y(s)-sy(0)-y^' (0) =s^2 Y(s)-2s-4 L[?4y?^' (t)]=4(sY(s)-y(0))=4sY(s)-8 L[4y(t)]=4Y(s) L[y^'' (t)]-L[?4y?^' (t)]+ L[4y(t)] =s^2 Y(s)-2s-4-4sY(s)+8+4Y(s) =Y(s)(s^2-4s+4)-2s+4 L[6te^2t ]=6L[t^1 e^2t ]=6 1!/(s-2)^2 =6/(s-2)^2 ( L[t^n e^at ]=n!/(s-a)^(n+1) ) Y(s)(s^2-4s+4)-2s+4=6/(s-2)^2 Y(s) (s-2)^2-2s+4=6/(s-2)^2 Y(s) (s-2)^2=6/(s-2)^2 +2(s-2) Y(s)=6/(s-2)^4 +2/(s-2) Y(s)= F(s-2)とおくと F(s-2)=6/(s-2)^4 +2/(s-2) ∴F(s)=6/s^4 +2/s=3!/s^(3+1) +2/s y(t)=L^(-1)[F(s-2)]=e^2t L^(-1) [F(s)] ( L^(-1) [F(s-a)]=e^at L^(-1) [F(s)]) =e^2t L^(-1) [3!/s^(3+1) +2/s] (L[t^n ]=n!/s^(n+1) ) =e^2t (t^3+2) http://rio2016.5ch.net/test/read.cgi/math/1745314067/522
523: 132人目の素数さん [] 2025/07/28(月) 09:42:26.88 ID:Vsf8XHSj I=∫_0^2023?2/(x+e^x ) dx と置く。 x?0⇒0<x<e^xであるから、 2/(2e^x )<2/(x+e^x )<2/e^x ∴1/e^x <2/(x+e^x )<2/e^x ∫_0^2023?e^(-x) dx<I<∫_0^2023??2e^(-x) ? dx [-?(■( @e^(-x) )@ )]_0^2023=-?(■( @e^(-2023) )@ )+1 1-?(■( @e^(-2023) )@ )<I<2-2e^(-2023)<2???????? f(x)=2/(x+e^x ) f^' (x)=-2(1+e^x )/(x+e^x )^2 =-(2+2e^x)/(x+e^x )^2 <0 (単調減少) f^'' (x)=-(2e^x (x+e^x )^2-2(1+e^x )2(x+e^x )(1+e^x ))/(x+e^x )^4 =(4(1+e^x )^2 (x+e^x )-2e^x (x+e^x )^2)/(x+e^x )^4 =(4(1+e^x )^2-2e^x (x+e^x ))/(x+e^x )^3 >(4(1+e^x )^2-2e^x (e^x+e^x ))/(x+e^x )^3 > (4(1+e^x )^2-4(e^x )^2)/(x+e^x )^3 >0 (下に凸) (1,f(1))におけるの接線の方程式は y- f(1)=f^' (1)(x-1) y- 2/(1+e)=-2(1+e)/(1+e)^2 (x-1) http://rio2016.5ch.net/test/read.cgi/math/1745314067/523
524: 与作 [] 2025/07/28(月) 09:55:32.36 ID:/cefVkod n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)が成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/524
525: 与作 [] 2025/07/28(月) 09:56:10.29 ID:/cefVkod n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)が成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/525
526: 与作 [] 2025/07/28(月) 09:56:42.02 ID:/cefVkod nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)が成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/526
527: 132人目の素数さん [] 2025/07/28(月) 12:54:47.25 ID:Vsf8XHSj ∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α) x:0→1 t:α→β x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α) ∫_0^1?x^m (1-x)^n dx =∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt =1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)! ∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx =-1/6 (β-α)^3 m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx =-1/12 (β-α)^4 m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx =(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5 http://rio2016.5ch.net/test/read.cgi/math/1745314067/527
528: 132人目の素数さん [] 2025/07/28(月) 12:55:10.57 ID:Vsf8XHSj b=t×n=1/√(a^2+c^2 ) (■(-asin?(t)@acos?(t)@c))×(■(-cos?(t)@?-sin??(t)@0)) ※外積のスカラー倍 =1/√(a^2+c^2 ) |■(i&j&k@-asin?(t)&acos?(t)&c@-cos?(t)&-sin?(t)&0)| =1/√(a^2+c^2 ) (|■(acos?(t)&c@-sin?(t)&0)|,|■(c&-asin?(t)@0&-cos?(t) )|,|■(-asin?(t)&acos?(t)@-cos?(t)&-sin?(t) )|) =1/√(a^2+c^2 ) (csin?(t), -?c?cos??(t), a) b^' (s)=db/ds=db/dt?dt/ds=1/√(a^2+c^2 ) (?c?cos??(t), csin?(t), 0) 1/√(a^2+c^2 ) =1/(a^2+c^2 ) (?c?cos??(t), csin?(t), 0) b^' (s)=-τn より 1/(a^2+c^2 ) (?c?cos??(t), csin?(t), 0)=-τ(-cos?(t), ?-sin??(t), 0) =τ(cos?(t), sin?(t), 0) 1/(a^2+c^2 ) ?c?cos??(t)=τ cos?(t) τ=c/(a^2+c^2 ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/528
529: 132人目の素数さん [] 2025/07/28(月) 12:55:39.31 ID:Vsf8XHSj E(t)=Ri(t)+1/C ∫?i(t) dt i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t) E(t)=R dq(t)/dt+q(t)/C L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s) L[q(t)/C]=Q(s)/C L[E]=E/s E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C) Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR) 1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs s=0⇒A/CR=1 A=CR s=-1/CR⇒-B 1/CR=1 B=-CR Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR) L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/529
530: 132人目の素数さん [] 2025/07/28(月) 16:43:49.34 ID:Vsf8XHSj y''+6y'+10y=2sin(x). D^2+6D+10=0. D=-3±i (D^2+6D+10)y=2sin(x) (D-(-3+i))(D-(-3-i))y=i(e^(-ix)-e^ix) y=1/(D-(-3+i))∙1/(D-(-3-i)) i(e^(-ix)-e^ix) a=-3+i, b = -3-i, f(x)=i(e^(-ix)-e^ix) と置くと y=1/(D-a)∙1/(D-b) f(x)=1/(D-b)∙1/(D-a) f(x) =1/(D-b) e^ax 1/D e^(-ax) f(x)=1/(D-b) e^ax ∫▒〖e^(-ax) f(x)〗 dx =e^bx 1/D e^(-bx) e^ax ∫▒〖e^(-ax) f(x)〗 dx =e^bx 1/D e^(a-b)x ∫▒〖e^(-ax) f(x)〗 dx =e^bx ∫▒(e^(a-b)x ∫▒〖e^(-ax) f(x)〗 dx) dx =e^(-(3+i)x) ∫▒(e^2ix ∫▒〖e^((3-i)x) i(e^(-ix)-e^ix)〗 dx) dx =e^(-(3+i)x) ∫▒(〖ie〗^2ix ∫▒〖e^((3-2i)x)-e^3x 〗 dx) dx =e^(-(3+i)x) i∫▒e^2ix (e^((3-2i)x)/(3-2i)-e^3x/3+A)dx =e^(-(3+i)x) i∫▒〖e^3x/(3-2i)-e^((3+2i)x)/3+A〗 e^2ix dx =e^(-(3+i)x) (〖ie〗^3x/(3(3-2i))-〖ie〗^((3+2i)x)/(3(3+2i))+A (i2e^2ix)/2i+B) =e^(-ix) e^(-3x) ((ie^3x)/(3(3-2i))-(〖ie〗^2ix e^3x)/(3(3+2i))+Ae^2ix+B) =e^(-ix) (i/(3(3-2i))-〖ie〗^2ix/(3(3+2i))+Ae^((2i-3)x)+Be^(-3x) ) =(ie^(-ix))/(3(3-2i))-(ie^ix)/(3(3+2i))+Ae^((i-3)x)+Be^(-(3+i)x) =i (3+2i)/3∙(cosx-isinx)/13-i (3-2i)/3∙(cosx+isinx)/13+e^(-3x) (Ae^ix+Be^(-ix)) =i (4icosx-6isinx)/39+e^(-3x) (Acosx+iAsinx+Bcosx-iBsinx) =(-4cosx+6sinx)/39+e^(-3x) ((A+B)cosx+i(A-B)sinx) =2sinx/13-4cosx/39+e^(-3x) (C_1 cosx+C_2 sinx) http://rio2016.5ch.net/test/read.cgi/math/1745314067/530
531: 132人目の素数さん [] 2025/07/28(月) 16:44:14.23 ID:Vsf8XHSj L[cos(at)]=∫_0^∞??e^(-st) cos(at) ? dt=lim┬(b→∞)??∫_0^b??e^(-st) cos(at) ? dt? ∫??e^ax cos(bx) ? dx=∫??e^ax/(a^2+b^2 ) acos(bx)+bsin(bx) ? dx lim┬(b→∞)??∫_0^b??e^(-st) cos(at) ? dt? =lim┬(b→∞)??[e^(-st)/(s^2+a^2 ) (?( @?-scos??(at)+asin(at)@ ))]_0^b ? =lim┬(b→∞)?(e^(-sb)/(s^2+a^2 ) (asin?(ab)-scos(ab))-1/(s^2+a^2 ) (-s)) =e^(-sb)/(s^2+a^2 ) lim┬(b→∞)?(asin?(ab)-scos(ab))+s/(s^2+a^2 ) =1/(s^2+a^2 ) lim┬(b→∞)?((asin?(ab)-scos(ab))/e^sb )+s/(s^2+a^2 ) Asin?(ab)-Bcos(ab)=√(A^2+B^2 ) sin(ab-θ) |(asin?(ab)-scos(ab))/e^sb |=(√(s^2+a^2 ) |sin(ab-θ)|)/e^sb ?√(s^2+a^2 )/e^sb lim┬(b→∞)?((asin?(ab)-scos(ab))/e^sb )=0 ∴L[cos(at)]=s/(s^2+a^2 ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/531
532: 132人目の素数さん [] 2025/07/28(月) 17:43:24.85 ID:Vsf8XHSj 2=2?3?7 5≡1, 5^(2021^2021 )≡ 1^(2021^2021 )≡1 (mod 2) ・・・・・・・・・・? 5≡-1, 5^(2021^2021 )≡ (-1)^(2021^2021 )≡-1≡2 (mod 3)・・・・・・・・・・? 5^1≡5, 5^(2021^2021 ) (mod 7) 5^(7-1)≡5^6≡1 (mod 7) t=2021^2021, 2021^t≡5^t (mod 7) 5^t= 5^(6k+r)=5^6k 2^r≡5^r (mod 7) 5^(2021^2021 )≡5^t (mod 7) 2021≡-1 (mod 6) t=2021^2021≡(-1)^2021≡-1≡5 (mod 6) 5^5=3125=446?7+3≡3 (mod 7) 5^1≡5, 5^2≡4 (mod 7) 5^3≡20≡6 (mod 7) 5^5=5^2 5^3≡24≡3 (mod 7) ∴2021^(2021^2021 )≡5^(2021^2021 )≡5^5 ≡3 (mod 7)・・・・・・・・・・? x≡ 2021^(2021^2021 ) とおくと x≡1 (mod 2) ,21x≡21 (mod 42) ・・・・・・・・・・? x≡2 (mod 3) ,14x≡28 (mod 42) ・・・・・・・・・・? x≡3 (mod 7) , 6x≡18 (mod 42) ・・・・・・・・・・? 41x≡67 (mod 42) 42x≡42 (mod 42) ∴x≡-25≡17 (mod 42) http://rio2016.5ch.net/test/read.cgi/math/1745314067/532
533: 132人目の素数さん [] 2025/07/28(月) 17:43:54.74 ID:Vsf8XHSj ?θ/?s=(x ?(y ?(t+?t)-y ?(t))-y ?(x ?(t+?t)-x ?(t)))/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) 1/?r(t+?t)-r(t)? =((x ?(y ?(t+?t)-y ?(t))-y ?(x ?(t+?t)-x ?(t)))/?t)/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) ?t?r(t+?t)-r(t)?^(-1) =(x ? ((y ?(t+?t)-y ?(t)))/?t-y ? ((x ?(t+?t)-x ?(t)))/?t)/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) ?(r(t+?t)-r(t))/?t?^(-1) 1/R=(lim)┬(?t→0)???θ/?s?=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) ? ?r ? ??^(-1) =(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) =(x ?y ?-yx ?)/(x ?^2+y ?^2 )^(3/2) R=(x ?^2+y ?^2 )^(3/2)/(x ?y ?-yx ? ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/533
534: 132人目の素数さん [] 2025/07/28(月) 17:44:26.20 ID:Vsf8XHSj a_1= [■(0@1@1)],a_2= [■(1@0@1)],a_3= [■(1@1@0)] a_1→u_1 u_1=a_1/?a_1 ? =a_1/√(1+1)=1/√2 [■(0@1@1)] a_2→u_2 b_1=(a_2?u_1 ) u_1=(1/√2 [■(1@0@1)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)] b_2=a_2-(a_2?u_1 ) u_1 =[■(1@0@1)]-1/2 [■(0@1@1)]=[■(1-0@0-1/2@1-1/2)]=[■(1@-1/2@1/2)]=1/2 [■(2@-1@1)] ?b_2 ?=1/2 √(4+1+1)=√6/2 u_2=b_2/?b_2 ? =2/√6 1/2 [■(2@-1@1)]=1/√6 [■(2@-1@1)] a_3→u_3 c_1=(a_3?u_1 ) u_1=(1/√2 [■(1@1@0)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)] http://rio2016.5ch.net/test/read.cgi/math/1745314067/534
535: 132人目の素数さん [] 2025/07/30(水) 11:29:23.84 ID:O8+PnNqB f(t)=t (-π<t?π) b_n=∫_(-π)^π?f(t)sin(nt) dt=∫_(-π)^π?tsin(nt) dt =-∫_(-π)^π??t(cos(nt)/n)^' ? dt =-[t/n cos(nt)]_(-π)^π+1/n ∫_(-π)^π?cos(nt) dt =-(π/n cos(nπ)-(-π)/n cos(-nπ))+1/n [1/n sin(nt)]_(-π)^π =-(π/n cos(nπ)+π/n cos(nπ))=2π (-cos(nπ))/n=2π (-1)^(n+1)/n f(t)=2?_(n=1)^∞?(-1)^(n+1)/n sin(nt) =2(sin(t)-1/2 sin(2t)+1/3 sin(3t)-1/4 sin(4t)+1/5 sin(5t)-?) f(π/2)=π/2=sin(π/2)+1/3 sin(3π/2)+1/5 sin(5π/2)+1/7 sin(7π/2)+? =1-1/3+1/5-1/7+?=?_(n=1)^∞?(-1)^(n+1)/(2n-1) ∴π=2?_(n=1)^∞?(-1)^(n+1)/(2n-1) http://rio2016.5ch.net/test/read.cgi/math/1745314067/535
536: 132人目の素数さん [] 2025/07/30(水) 11:30:42.41 ID:O8+PnNqB ∫_0^∞?(sin(x))/x dx ∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x) F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0) dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx =∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx =∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx =-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx =∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx =[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx =0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx =1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx =[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx =-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx =-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx) http://rio2016.5ch.net/test/read.cgi/math/1745314067/536
537: 132人目の素数さん [] 2025/07/30(水) 11:31:00.26 ID:O8+PnNqB dF(s)/ds+1/s^2 dF(s)/ds=-1/s^2 (1+1/s^2 ) dF(s)/ds=((s^2+1)/s^2 ) dF(s)/ds=-1/s^2 dF(s)/ds=-1/(s^2+1) F(s)=-∫?1/(s^2+1) ds s=tan(θ) ds=1/(?cos?^2 (θ) ) dθ -∫?1/(s^2+1) ds=-∫??1/(?tan?^2 (θ)+1)?1/(?cos?^2 (θ) )? dθ=-θ=-arctan(s)+C F(s)=-arctan(s)+C F(s)=∫_0^∞??e^(-sx) sin?(x)/x? dx (s?0) F(∞)=∫_0^∞?0 dx=0=-arctan(∞)+C C=arctan(∞)=π/2 F(s)=-arctan(s)+π/2 http://rio2016.5ch.net/test/read.cgi/math/1745314067/537
538: 132人目の素数さん [] 2025/07/31(木) 09:22:49.65 ID:QyItRY8I E(t)=Ri(t)+1/C ∫?i(t) dt i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t) E(t)=R dq(t)/dt+q(t)/C L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s) L[q(t)/C]=Q(s)/C L[E]=E/s E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C) Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR) 1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs s=0⇒A/CR=1 A=CR s=-1/CR⇒-B 1/CR=1 B=-CR Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR) L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/538
539: 132人目の素数さん [] 2025/07/31(木) 09:23:18.51 ID:QyItRY8I (x+1)^2020=(x+1)^(2?1010)=(x^2+2x+1)^1010 =((x^2+1)+2x)^1010 ((x^2+1)+2x)^1010 =(x^2+1)^1010+1010(x^2+1)^1009 2x+(_1010^ )C_2 (x^2+1)^1008 (2x)^2+ ?+1010(x^2+1) (2x)^1009+(2x)^1010 (2x)^1010以外の項はx^2+1の倍数なのでpを適当な整数とすると ((x^2+1)+2x)^1010=p(x^2+1)+(2x)^1010……? (2x)^1010=(4x^2 )^505=((4x^2+4)-4)^505 ((4x^2+4)-4)^505 =(4x^2+4)^505+505(4x^2+4)^504 (-4)+(_505^ )C_2 (4x^2+4)^1008 (-4)^2+ ?+505(4x^2+4) (-4)^1009+(-4)^1010 (-4)^1010以外の項は4x^2+4の倍数なのでqを適当な整数とすると ((4x^2+4)-4)^505=q(4x^2+4)+(-4)^1010 =4q(x^2+1)+(-2)^505 2^505 =4q(x^2+1)-2^1010……? (x+1)^2020=p(x^2+1)+(2x)^1010 =p(x^2+1)+4q(x^2+1)-2^1010 =(x^2+1)(p+4q)-2^1010 http://rio2016.5ch.net/test/read.cgi/math/1745314067/539
540: 132人目の素数さん [] 2025/07/31(木) 09:24:01.10 ID:QyItRY8I ∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α) x:0→1 t:α→β x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α) ∫_0^1?x^m (1-x)^n dx =∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt =1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)! ∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx =-1/6 (β-α)^3 m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx =-1/12 (β-α)^4 m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx =(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5 http://rio2016.5ch.net/test/read.cgi/math/1745314067/540
541: 132人目の素数さん [] 2025/07/31(木) 11:53:56.03 ID:QyItRY8I a_1= [■(0@1@1)],a_2= [■(1@0@1)],a_3= [■(1@1@0)] a_1→u_1 u_1=a_1/?a_1 ? =a_1/√(1+1)=1/√2 [■(0@1@1)] a_2→u_2 b_1=(a_2?u_1 ) u_1=(1/√2 [■(1@0@1)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)] b_2=a_2-(a_2?u_1 ) u_1 =[■(1@0@1)]-1/2 [■(0@1@1)]=[■(1-0@0-1/2@1-1/2)]=[■(1@-1/2@1/2)]=1/2 [■(2@-1@1)] ?b_2 ?=1/2 √(4+1+1)=√6/2 u_2=b_2/?b_2 ? =2/√6 1/2 [■(2@-1@1)]=1/√6 [■(2@-1@1)] a_3→u_3 c_1=(a_3?u_1 ) u_1=(1/√2 [■(1@1@0)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)] http://rio2016.5ch.net/test/read.cgi/math/1745314067/541
542: 132人目の素数さん [] 2025/07/31(木) 11:54:17.57 ID:QyItRY8I M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx? M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) ) =-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2 M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx =1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx =1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt (x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2 -∞<x?∞ ⇒-∞<t?∞ http://rio2016.5ch.net/test/read.cgi/math/1745314067/542
543: 与作 [] 2025/07/31(木) 22:16:22.84 ID:BoHO+gX+ n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)が成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/543
544: 与作 [] 2025/07/31(木) 22:17:14.91 ID:BoHO+gX+ n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)が成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/544
545: 与作 [] 2025/07/31(木) 22:18:06.52 ID:BoHO+gX+ nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)が成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/545
546: 132人目の素数さん [] 2025/08/01(金) 17:03:07.33 ID:2hip4JpQ ∫_0^∞?(sin(x))/x dx ∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x) F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0) dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx =∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx =∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx =-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx =∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx =[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx =0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx =1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx =[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx =-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx =-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx) http://rio2016.5ch.net/test/read.cgi/math/1745314067/546
547: 132人目の素数さん [] 2025/08/01(金) 17:04:10.07 ID:2hip4JpQ Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12) x=e^logx 2=e^log2 2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2) x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx) ここで (2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14) 2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0 √(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1 x=√2n?12 、つまりn?72 のとき(#15)は成り立つ。 37?n?71⇒n?73?2n 19?n?36⇒n?37?2n 10?n?18⇒n?19?2n 6?n?9⇒n?11?2n n=4,5⇒n?7?2n n=3⇒3?6?6 n=2⇒2?3?4 n=1⇒1?2?2 http://rio2016.5ch.net/test/read.cgi/math/1745314067/547
548: 132人目の素数さん [] 2025/08/01(金) 17:05:03.84 ID:2hip4JpQ x≡1 (mod 3) x≡2 (mod 5) x≡3 (mod 11) 3*5*11 = 165 x≡1 (mod 3) ……? x≡2 (mod 5) ……? x≡3 (mod 11) ……? 5x≡5 (mod 15) ……?=?*5 3x≡6 (mod 15) ……?=?*3 6x≡12 (mod 15) ……?=?*2 x≡7 (mod 15) ……?=?-? 11x≡77 (mod 165) ……?=?*7 15x≡45 (mod 165) ……?=?*15 4x≡-32 (mod 165) ……?-? x≡-8 (mod 165) ∴x = 165k - 8(k は整数) http://rio2016.5ch.net/test/read.cgi/math/1745314067/548
549: 132人目の素数さん [] 2025/08/01(金) 17:05:58.73 ID:2hip4JpQ 6x≡3 (mod 15) 2x≡1 (mod 5) 6x≡3 (mod 5) 6≡1, 6x≡x (mod 5) x≡3≡8≡13 (mod 5) ∴x≡3, 8, 13 (mod 15) http://rio2016.5ch.net/test/read.cgi/math/1745314067/549
550: 132人目の素数さん [] 2025/08/01(金) 17:07:23.92 ID:2hip4JpQ 74x≡117 (mod 403) 74x≡1 (mod 403) 403=5*74+33 74=2*33+8 33=4*8+1 1=33-4*8=33-4(74-2*33) =33-4*74+8*33=9*33-4*74 =9(403-5*74)-4*74=9*403-49*74 (=3627-3626=1) 117*(-49)*74≡117 (403) -5733*74≡117 (403) (403*15-5733)*74≡117 (403) 312*74≡117 (403) http://rio2016.5ch.net/test/read.cgi/math/1745314067/550
551: 与作 [] 2025/08/01(金) 19:43:46.62 ID:SvqlOkUt n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)が成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/551
552: 与作 [] 2025/08/01(金) 19:44:19.67 ID:SvqlOkUt n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)が成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/552
553: 与作 [] 2025/08/01(金) 19:45:26.96 ID:SvqlOkUt nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)が成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/553
554: 132人目の素数さん [] 2025/08/01(金) 21:29:42.07 ID:2hip4JpQ ∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α) x:0→1 t:α→β x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α) ∫_0^1?x^m (1-x)^n dx =∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt =1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)! ∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx =-1/6 (β-α)^3 m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx =-1/12 (β-α)^4 m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx =(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5 http://rio2016.5ch.net/test/read.cgi/math/1745314067/554
555: 132人目の素数さん [] 2025/08/01(金) 21:30:16.09 ID:2hip4JpQ ∂u/∂t=(∂u^2)/(∂x^2 ) (0<x<1, t>0) u_x (0,t)=u_x (1,t)=0 境界条件(断熱条件) u(x,0)=δ(x-1/2) 初期条件 u(x,t)=X(x)T(t) ∂u/∂t=XT^' ∂u/∂x=TX^' (∂u^2)/(∂x^2 )=∂/∂x TX^'=TX^'' XT^'= TX^'' T^'/T=X^''/X (T^' (t))/T(t) =(X^'' (x))/X(x) T^'/T=X^''/X=μ X^''/X=μ X^''-μX=0 ??? T^'/T=μ T^'=μT ??? http://rio2016.5ch.net/test/read.cgi/math/1745314067/555
556: 132人目の素数さん [] 2025/08/01(金) 21:31:06.55 ID:2hip4JpQ x ?+ax ?+bx=0 ??? λ^2+aλ+b=0 λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt)) λ^2-μ=0 0^2-4(-μ)=4μ (?@)μ>0のときλ=±√μなので X= C_1 e^(√μ x)+C_2 e^(-√μ x) X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x) 境界条件 u_x (0,t)=u_x (1,t)=0より u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0 μ>0なので C_1-C_2=0 C_1=C_2 u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0 C_1=C_2なので (C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0 μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0 (※e^√μ=e^(-√μ)となるのはμ=0のときだけ) X(x)=0 ∴u(x,t)=X(x)T(t)=0 (?A)μ=0のとき重解なので X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x 境界条件 u_x (0,t)=u_x (1,t)=0より X^' (0)=X^' (1)= C_2=0 X=C_1 http://rio2016.5ch.net/test/read.cgi/math/1745314067/556
557: 与作 [] 2025/08/01(金) 23:01:06.08 ID:SvqlOkUt n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/557
558: 与作 [] 2025/08/01(金) 23:02:09.17 ID:SvqlOkUt n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/558
559: 与作 [] 2025/08/01(金) 23:03:08.39 ID:SvqlOkUt nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/559
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.009s