フェルマーの最終定理の証明 (559レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
1: 与作 [] 2025/04/22(火) 18:27:47.38 ID:ZBPrKUfk n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき、成立つので、k=1以外でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/1
387: 132人目の素数さん [] 2025/07/17(木) 15:28:49.17 ID:88t231TB τ<0⇒f(τ)=0 ∴f(τ)g(t-τ)=0 t-τ>1⇒g(t-τ)=0 ∴f(τ)g(t-τ)=0 t-τ?1 ⇒ f(τ)=e^(-τ), g(t-τ)=t-τ f*g(t)=∫_(t-1)^t??e^(-τ) (t-τ)dτ?=∫_(t-1)^t??(-e^(-τ) )^' (t-τ)dτ? =-[?( @e^(-τ)@ )(t-τ)]_(t-1)^t-∫_(t-1)^t??e^(-τ) dτ? =-(0-e^(1-t) )+[?( @e^(-τ)@ )]_(t-1)^t=e^(1-t)+e^(-t)-e^(1-t)=e^(-t) http://rio2016.5ch.net/test/read.cgi/math/1745314067/387
436: 132人目の素数さん [] 2025/07/21(月) 11:08:32.42 ID:W1xjBo9V 任意の自然数nに対しn<P?2nを満たす素数Pが存在する。(#15) nより大きく2 n以下の素数積Qについて Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12) が成り立つ。したがって、もし Q>1ならば(#15) が成り立つ。 x=e^logx 2=e^log2 なので 2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2) x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx) ここで (2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14) を使うと 2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0 √(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1 したがって x=√2n?12 、つまりn?72 のとき(#15)は成り立つ。 37?n?71⇒n?73?2n 19?n?36⇒n?37?2n 10?n?18⇒n?19?2n 6?n?9⇒n?11?2n n=4,5⇒n?7?2n n=3⇒3?6?6 n=2⇒2?3?4 n=1⇒1?2?2 したがって 1?n?71 のとき(#15)は成り立つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/436
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.022s