フェルマーの最終定理の証明 (499レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
271: 与作 [] 2025/07/02(水) 09:17:06.07 ID:oZn35gPk nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 よって、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kとならない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/271
272: 与作 [] 2025/07/02(水) 11:50:07.61 ID:oZn35gPk n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/272
273: 与作 [] 2025/07/02(水) 11:54:36.13 ID:oZn35gPk n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/273
274: 与作 [] 2025/07/02(水) 12:00:36.06 ID:oZn35gPk nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/274
275: 与作 [] 2025/07/02(水) 12:09:16.80 ID:oZn35gPk 同じ数は、同じ形に因数分解できる。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/275
276: 与作 [] 2025/07/02(水) 12:10:56.78 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/276
277: 与作 [] 2025/07/02(水) 13:06:19.09 ID:oZn35gPk n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/277
278: 与作 [] 2025/07/02(水) 13:43:55.04 ID:oZn35gPk n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/278
279: 与作 [] 2025/07/02(水) 15:33:35.63 ID:oZn35gPk n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/279
280: 与作 [] 2025/07/02(水) 15:34:22.42 ID:oZn35gPk nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/280
281: 与作 [] 2025/07/02(水) 15:47:33.95 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/281
282: 与作 [] 2025/07/02(水) 15:54:07.41 ID:oZn35gPk n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/282
283: 与作 [] 2025/07/02(水) 15:56:43.22 ID:oZn35gPk n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2*xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/283
284: 与作 [] 2025/07/02(水) 16:01:50.77 ID:oZn35gPk n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/284
285: 与作 [] 2025/07/02(水) 16:28:41.16 ID:oZn35gPk nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/285
286: 与作 [] 2025/07/02(水) 16:31:15.81 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2*xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/286
287: 与作 [] 2025/07/02(水) 16:32:29.09 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/287
288: 与作 [] 2025/07/02(水) 16:33:35.03 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/288
289: 与作 [] 2025/07/02(水) 17:59:45.99 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2*xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/289
290: 与作 [] 2025/07/02(水) 18:25:34.98 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/290
291: 与作 [] 2025/07/02(水) 19:08:02.99 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/291
292: 与作 [] 2025/07/02(水) 19:23:06.07 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2*xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/292
293: 与作 [] 2025/07/02(水) 19:44:03.23 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/293
294: 与作 [] 2025/07/02(水) 19:55:39.19 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/294
295: 与作 [] 2025/07/02(水) 20:17:03.66 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2*xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/295
296: 与作 [] 2025/07/02(水) 21:02:44.69 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/296
297: 与作 [] 2025/07/02(水) 21:21:16.28 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/297
298: 与作 [] 2025/07/02(水) 21:35:25.64 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2*xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/298
299: 与作 [] 2025/07/02(水) 22:20:57.30 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/299
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.019s