フェルマーの最終定理の証明 (636レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
617: 08/09(土)20:44 ID:ayZ85Z+w(1/3) AAS
(∂/∂x+a ∂/∂y)f(x,y)=g(x,y)
f(x,y)=X(x)Y(y)
(∂/∂x+a ∂/∂y)X(x)Y(y)=∂/∂x X(x)Y(y)+a ∂/∂y X(x)Y(y)
∂/∂x X(x)Y(y)+a ∂/∂y X(x)Y(y)=d/dx X(x)Y(y)+a d/dy X(x)Y(y)
(∂/∂x+a ∂/∂y)f(x,y)=0???
(d/dx+a d/dy)XY=d/dx XY+a d/dy XY=0
d/dx XY=-a d/dy XY
省7
618: 08/09(土)20:48 ID:ayZ85Z+w(2/3) AAS
?_Cf(x,y)dx
=∫[a→b]f(x,φ_1(x))dx+∫[b→a]f(x,φ_2(x))dx
=∫[a→b]f(x,φ_1(x))dx-∫[a→b]f(x,φ_2(x))dx
=-∫[a→b]f(x,φ_2(x))-f(x,φ_1(x)) dx
=-∫[a→b]∫_(φ_1(x))^(φ_2(x))(∂f(x,y))/∂y dy dx
=-∬_D^ (∂f(x,y))/∂y dxdy
※∫_(φ_1(x))^(φ_2(x))(∂f(x,y))/∂y dy=[( @f(x,y)@ )]_(φ_1(x))^(φ_2(x))=f(x,φ_2(x))-f(x,φ_1(x))
619: 08/09(土)20:50 ID:ayZ85Z+w(3/3) AAS
∇=(∂/∂x ,∂/∂y), ∇f=(∂f/∂x ,∂f/∂y)
(1)∇(C_1 f+C_2 g)=C_1 ∇f+C_2 ∇g
∇(C_1 f+C_2 g)=(∂(C_1 f+C_2 g)/∂x ,∂(C_1 f+C_2 g)/∂y)
=(C_1 ∂f/∂x+C_2 ∂g/∂x ,C_1 ∂f/∂y+C_2 ∂g/∂y)
=C_1 (∂f/∂x ,∂f/∂y)+C_2 (∂g/∂x ,∂g/∂y)
(2)∇(fg)=(∇f)g+f(∇g)
∇(fg)=(∂fg/∂x ,∂fg/∂y)=(∂f/∂x g+f ∂g/∂x, ∂f/∂y g+f ∂g/∂y)
省4
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.024s