フェルマーの最終定理の証明 (997レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
916: 09/26(金)06:16 ID:Ek58bAv0(1/4) AAS
f(θ)=a_0/2+納k=1→∞](a_k cos(kθ)+b_k sin(kθ))
a_k=1/π ∫[-π→π]f(θ)cos(kθ)dθ)
b_k=1/π ∫[-π→π]f(θ)sin(kθ)dθ
e^jθ =cosθ+jsinθ
e^(-jθ)=cosθ-jsinθ
cosθ=(e^jθ+e^(-jθ))/2. sinθ=(e^jθ-e^(-jθ))/2j.
f(θ)=a_0/2+納k=1→∞](a_k (e^jkθ+e^(-jkθ))/2+b_k (e^jkθ-e^(-jkθ))/2j)
省19
917: 09/26(金)06:16 ID:Ek58bAv0(2/4) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
省21
920: 09/26(金)16:50 ID:Ek58bAv0(3/4) AAS
∫[0→π/2]( tan(x) )^(1/n) dx (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
921: 09/26(金)16:51 ID:Ek58bAv0(4/4) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
省6
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.942s*