[過去ログ] フェルマーの最終定理の証明 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
841: 与作 09/14(日)16:17 ID:IGsk2b10(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
842: 与作 09/14(日)16:18 ID:IGsk2b10(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
843: 与作 09/14(日)16:19 ID:IGsk2b10(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
844: 09/15(月)07:53 ID:FprhnjkS(1/3) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
y''(t) - 3'y(t) + 2y(t) = 0
y0 = C1e^t + C2e^(2t)
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
省8
845: 09/15(月)07:57 ID:FprhnjkS(2/3) AAS
(D^2+1)y=1/(cos^3 (x) )
(D^2+1)y=0
λ^2+1=0 λ=0±i
y_0=e^(-0) (C_1 cos(x)+C_2 sin(x))=C_1 cos(x)+C_2 sin(x)
cos(x)=((e^ix+e^(-ix))/2)
1/(cos^3 (x) )=(2/(e^ix+e^(-ix) ))^3=8/(e^ix+e^(-ix) )^3
(D^2+1) y_s=8/(e^ix+e^(-ix) )^3
省22
846: 09/15(月)08:05 ID:FprhnjkS(3/3) AAS
(1)自然数nに対しz^2n+z^n+1をz^2+z+1で割った余り
n=3k (k≧1)
z^2n+z^n+1=z^2(3k) +z^3k+1≡3 mod(z^2-z+1)

n=3k+1 (k≧0)
z^2n+z^n+1=z^2(3k+1) +z^(3k+1)+1=z^6k z^2+z^3k z+1
≡z^2+z+1≡0 mod(z^2-z+1)
n=3k+2 (k≧0)
省29
847: 与作 09/15(月)10:30 ID:0WxCAwo7(1/4) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
848: 与作 09/15(月)10:31 ID:0WxCAwo7(2/4) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
849: 与作 09/15(月)10:31 ID:0WxCAwo7(3/4) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
850: 与作 09/15(月)18:47 ID:0WxCAwo7(4/4) AAS
ab=cdならば、a=kcのとき、b=d/kとなる。
851: 09/16(火)08:17 ID:+a44gZV8(1/3) AAS
P(X=k)=( _(n-k) C_2)/( _n C_3 )=((n-k)(n-k-1)/2)/(n(n-1)(n-2)/3∙2)=3(n-k)(n-k-1)/n(n-1)(n-2)
E[X]=?_(k=1)^n▒〖k 3(n-k)(n-k-1)/n(n-1)(n-2) 〗=3?_(k=1)^n▒〖k ((n-k)^2-(n-k))/n(n-1)(n-2) 〗
=3?_(k=1)^n▒〖k (k^2-2nk+n^2-n+k)/n(n-1)(n-2) 〗=3?_(k=1)^n▒〖k (k^2+(1-2n)k+n^2-n)/n(n-1)(n-2) 〗
=3?_(k=1)^n▒(k^3+(1-2n) k^2+(n^2-n)k)/n(n-1)(n-2)
?_(k=1)^n▒〖k^3+(1-2n) k^2+(n^2-n)k〗
=(n(n+1)/2)^2-(2n-1) n(n+1)(2n+1)/6+(n^2-n) n(n+1)/2
=n(n+1)/2 (n(n+1)/2-(2n+1)(2n-1)/3+n^2-n)
省4
852: 09/16(火)08:17 ID:+a44gZV8(2/3) AAS
?_(k=1)^n▒2k(n-k)/n(n-1) =?_(k=1)^n▒(2kn/n(n-1) -〖2k〗^2/n(n-1) )
=2?_(k=1)^n▒k/(n-1)-2?_(k=1)^n▒k^2/n(n-1)
=2/(n-1)∙n(n+1)/2-2/n(n-1) ∙n(n+1)(2n+1)/6
=n(n+1)/(n-1)-1/(n-1)∙(n+1)(2n+1)/3
=(n+1)/(n-1) (n-(2n+1)/3)=(n+1)/(n-1)∙(3n-2n-1)/3
=(n+1)/(n-1)∙(n-1)/3=(n+1)/3
?_(k=1)^n▒k/(n-1)=1/(n-1)+2/(n-1)+⋯+n/(n-1)
省5
853: 09/16(火)08:19 ID:+a44gZV8(3/3) AAS
f(θ)=|θ| (-π<θ≤π)
f(θ)=a_0/2+?_(k=1)^∞▒〖a_k cos(kθ) 〗
a_0=1/π ∫_(-π)^π▒〖θcos(0)dθ=〗 2/π ∫_0^π▒〖θdθ=2/π [θ^2/2]_0^π=π〗
a_k=1/π ∫_(-π)^π▒〖θcos(kθ)dθ=2/kπ〗 ∫_0^π▒〖θ(sin(kθ))^' 〗 dθ
=2/kπ ([█(  @θsin(kθ)@ )]_0^π-∫_0^π▒sin(kθ) dθ)=2/kπ [2/k cos(kθ)]_0^π
=2/(k^2 π) (cos(kπ)-1)=2((-1)^k-1)/(k^2 π) ( k=1,2,3⋯⋯)
∴f(θ)=π/2+?_(k=1)^∞▒〖2((-1)^k-1)/(k^2 π) cos(kθ) 〗
省4
854: 09/17(水)05:04 ID:erGd2uYu(1/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
855: 09/17(水)05:04 ID:erGd2uYu(2/3) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
省14
856: 09/17(水)05:08 ID:erGd2uYu(3/3) AAS
AA省
857: 09/18(木)03:43 ID:NyHKnoJ/(1/3) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
省8
858: 09/18(木)03:45 ID:NyHKnoJ/(2/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
859: 09/18(木)03:45 ID:NyHKnoJ/(3/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
860: 09/18(木)06:52 ID:z6Ykaesg(1/12) AAS
何やってるバカスレ
861: 09/18(木)06:53 ID:z6Ykaesg(2/12) AAS
素数 X+Y
これが広大ならば
数学世界はこれだ
連立方程式や距離や時間は別のジャンルだ
862: 09/18(木)06:55 ID:z6Ykaesg(3/12) AAS
フェルマーの最終定理は地道に突破するしかない
屁理屈では証明不可能だ
863: 09/18(木)06:55 ID:z6Ykaesg(4/12) AAS
16ケタで限界では話にならない
864: 09/18(木)07:00 ID:z6Ykaesg(5/12) AAS
平行四辺形の面積をまっとうなやり方で算出しろ
これができたらフェルマーを超えるだろう
865: 09/18(木)07:01 ID:z6Ykaesg(6/12) AAS
底辺かける高さを正方形で使用したのなら
他の図形で同一式を使ってはならない
長方形でもだめだ
866: 09/18(木)07:02 ID:z6Ykaesg(7/12) AAS
底辺かける高さ 半径x半径 二乗
これらは=ではない
867: 09/18(木)07:03 ID:z6Ykaesg(8/12) AAS
r² と X²
これを別のものとして捉えているのが数学だぞ
868: 09/18(木)07:05 ID:z6Ykaesg(9/12) AAS
fracがx+yの幻想なのだから
sin cos tan πも同様の幻想と識別できる
869: 09/18(木)07:14 ID:z6Ykaesg(10/12) AAS
数学では X² を正方形ですと言っていない
r²の方すら言ってないがな
870: 09/18(木)07:17 ID:z6Ykaesg(11/12) AAS
正方形になりうる二乗はプロペラの如く回転可能であるが
底辺かける高さは回転不可能だ
871: 09/18(木)07:19 ID:z6Ykaesg(12/12) AAS
底辺かける高さの式を回転させるとあらぬ方向に飛んでいくだろう
このジャンルは物理ということになる
872: 09/19(金)04:39 ID:LR/DMPMr(1) AAS
口頭で説明できないと証明したことにならないかんな
カンペ読んだら無効
873: 09/19(金)12:25 ID:3gCB+OPO(1) AAS
♂↑(s,t) = ( x(s,t), y(s,t), z(s,t) )
♀↑(u,v) = ( x(u,v), y(u,v), z(u,v) )
874: 与作 09/20(土)22:39 ID:98rFN94X(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
875: 与作 09/20(土)22:40 ID:98rFN94X(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
876: 与作 09/20(土)22:40 ID:98rFN94X(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
877: 09/20(土)23:51 ID:C1Y9AdsW(1/3) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
省6
878: 09/20(土)23:52 ID:C1Y9AdsW(2/3) AAS
f(θ)=a_0/2+納k=1→∞](a_k cos(kθ)+b_k sin(kθ))
a_k=1/π ∫[-π→π]f(θ)cos(kθ)dθ)
b_k=1/π ∫[-π→π]f(θ)sin(kθ)dθ

e^jθ =cosθ+jsinθ
e^(-jθ)=cosθ-jsinθ
cosθ=(e^jθ+e^(-jθ))/2. sinθ=(e^jθ-e^(-jθ))/2j.
f(θ)=a_0/2+納k=1→∞](a_k (e^jkθ+e^(-jkθ))/2+b_k (e^jkθ-e^(-jkθ))/2j)
省19
879: 09/20(土)23:53 ID:C1Y9AdsW(3/3) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
省22
880: 与作 09/21(日)09:38 ID:YsMvHWFT(1/7) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
881: 与作 09/21(日)09:38 ID:YsMvHWFT(2/7) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
882: 与作 09/21(日)09:43 ID:YsMvHWFT(3/7) AAS
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
k=2,y=5,x=12
883: 与作 09/21(日)15:12 ID:YsMvHWFT(4/7) AAS
ab=cdが成立つならば、
ab=kcd/kも成立つ。
884: 09/21(日)20:53 ID:iuQyx4ZO(1/2) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
885: 09/21(日)20:54 ID:iuQyx4ZO(2/2) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
省10
886: 与作 09/21(日)22:06 ID:YsMvHWFT(5/7) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
887: 与作 09/21(日)22:06 ID:YsMvHWFT(6/7) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
888: 与作 09/21(日)22:07 ID:YsMvHWFT(7/7) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
889: 与作 09/22(月)10:16 ID:KgePW8Rc(1/5) AAS
ab=cdが成立つならば、
ab=kcd/kも成立つ。
890: 与作 09/22(月)10:52 ID:KgePW8Rc(2/5) AAS
ab=kcd/kが成立つならば、
a=kcのとき、b=d/kとなる。
891: 与作 09/22(月)18:01 ID:KgePW8Rc(3/5) AAS
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
k=2,y=5,x=12
892: 与作 09/22(月)21:28 ID:KgePW8Rc(4/5) AAS
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
k=4/3,y=11/3,x=56/9
893: 与作 09/22(月)21:48 ID:KgePW8Rc(5/5) AAS
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
k=4/3,y=11/3,x=56/9
x:y:z=56:33:65
894: 与作 09/23(火)10:22 ID:FdYrQuap(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
895: 09/23(火)11:38 ID:dg+TA+2x(1/3) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
y''(t) - 3'y(t) + 2y(t) = 0
y0 = C1e^t + C2e^(2t)
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
省8
896: 09/23(火)11:39 ID:dg+TA+2x(2/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
897: 与作 09/23(火)11:39 ID:FdYrQuap(2/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
898: 09/23(火)11:39 ID:dg+TA+2x(3/3) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
省8
899: 与作 09/23(火)13:02 ID:FdYrQuap(3/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
900: 与作 09/23(火)16:37 ID:FdYrQuap(4/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
901: 与作 09/23(火)18:20 ID:FdYrQuap(5/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
902: 与作 09/23(火)20:43 ID:FdYrQuap(6/6) AAS
ab=cdが成立つならば、
ab=kcd/kも成立つ。
903: 与作 09/24(水)13:25 ID:HBy7bhcd(1/2) AAS
ab=kcd/kが成立つならば、
a=kcのとき、b=d/kとなる。
904: 09/24(水)20:30 ID:0JqH39k2(1/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
905: 09/24(水)20:31 ID:0JqH39k2(2/3) AAS
2025/09/17(水) 05:04:24.75ID:erGd2uYu
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
省13
906: 09/24(水)20:32 ID:0JqH39k2(3/3) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
省7
907: 与作 09/24(水)22:54 ID:HBy7bhcd(2/2) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
908: 09/25(木)10:26 ID:ttJEdL9D(1/3) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
y''(t) - 3'y(t) + 2y(t) = 0
y0 = C1e^t + C2e^(2t)
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
省8
909: 09/25(木)10:26 ID:ttJEdL9D(2/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
910: 与作 09/25(木)11:12 ID:lFa5qIbH(1/5) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
911: 09/25(木)12:09 ID:ttJEdL9D(3/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
912: 与作 09/25(木)13:59 ID:lFa5qIbH(2/5) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
913: 与作 09/25(木)14:55 ID:lFa5qIbH(3/5) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
914: 与作 09/25(木)16:22 ID:lFa5qIbH(4/5) AAS
ab=cdが成立つならば、
ab=kcd/kも成立つ。
915: 与作 09/25(木)20:08 ID:lFa5qIbH(5/5) AAS
ab=kcd/kが成立つならば、
a=kcのとき、b=d/kとなる。
916: 09/26(金)06:16 ID:Ek58bAv0(1/4) AAS
f(θ)=a_0/2+納k=1→∞](a_k cos(kθ)+b_k sin(kθ))
a_k=1/π ∫[-π→π]f(θ)cos(kθ)dθ)
b_k=1/π ∫[-π→π]f(θ)sin(kθ)dθ

e^jθ =cosθ+jsinθ
e^(-jθ)=cosθ-jsinθ
cosθ=(e^jθ+e^(-jθ))/2. sinθ=(e^jθ-e^(-jθ))/2j.
f(θ)=a_0/2+納k=1→∞](a_k (e^jkθ+e^(-jkθ))/2+b_k (e^jkθ-e^(-jkθ))/2j)
省19
917: 09/26(金)06:16 ID:Ek58bAv0(2/4) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
省21
918: 与作 09/26(金)09:19 ID:46DqRb5V(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
919: 与作 09/26(金)12:17 ID:46DqRb5V(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
920: 09/26(金)16:50 ID:Ek58bAv0(3/4) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
省12
921: 09/26(金)16:51 ID:Ek58bAv0(4/4) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
省6
1-
あと 81 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s