[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ16 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ16 http://rio2016.5ch.net/test/read.cgi/math/1744899342/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
554: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/02(金) 07:43:58.41 ID:/rPcBrOx >>497 >収束列はコーシー列だがコーシー列は収束列とは限らない。実際、有理数全体の集合上で一般にコーシー列は収束列ではない。 >>506 >>3→3.1→3.14→3.141→3.1415→3.14159→3.141592→3.1415926→3.1415265→・・・ >>と 小数点以下を一桁ずつ 増やす数列で π に収束する 数列が作れるよ >Πが存在しなければ作れないよ >Πを定義したいのにΠの存在を前提にするバカ スレ主です 赤ペン先生します 2025/05/01のID:OARgC/YG さん、書いていること 全部間違いですね >>546より (引用開始) https://en.wikipedia.org/wiki/Cauchy_sequence Cauchy sequence In real numbers For any real number r, the sequence of truncated decimal expansions of r forms a Cauchy sequence. For example, when r=π, this sequence is (3, 3.1, 3.14, 3.141, ...). The mth and nth terms differ by at most 10^(1−m) when m < n, and as m grows this becomes smaller than any fixed positive number ε. https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97 コーシー列は、数列などの列で、十分先の方で殆ど値が変化しなくなるものをいう コーシー数列 無限数列 (xn) について lim n,m→∞|xn−xm|=0 が成り立つとき、数列 (xn) はコーシ−列である という 実数におけるコーシー列 実数の重要な性質の一つとして、実数全体の集合 R におけるどのようなコーシー列も必ず R 内に極限値を持つことが挙げられる 実数からなるどんなコーシー数列も収束列であるという事実は、歴史的な事情で「実数の連続性」と呼ばれる 実数列あるいは実ユークリッド空間内の点列のみに関して言うならば、それが収束することとコーシー列であることは同値となる この場合、コーシー列は必ず収束するので、|xn − xm| を評価してコーシー列か判定すれば、極限値を仮定することなく収束性が判定できる (引用終り) この en.wikipediaと ja.wikipediaとを、百回音読しましょう!w ;p) http://rio2016.5ch.net/test/read.cgi/math/1744899342/554
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 448 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.012s