[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
191: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 10:50:53.01 ID:hl9U/ln8 >>182 補足 ・Hilbert spaceの Hilbert dimension は、下記 "As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94]" (which may be a finite integer, or a countable or uncountable cardinal number). ・”The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space).” ”As a consequence of Parseval's identity,[95] 略 ” ・なお、>>146-147 "Proof that every vector space has a basis"では、有限和は 陽には使われていない なので ”The set X is nonempty since the empty set is an independent subset of V, and it is partially ordered by inclusion, which is denoted, as usual, by ⊆. Let Y be a subset of X that is totally ordered by ⊆, and let LY be the union of all the elements of Y (which are themselves certain subsets of V). Since (Y, ⊆) is totally ordered, every finite subset of LY is a subset of an element of Y, which is a linearly independent subset of V, and hence LY is linearly independent. Thus LY is an element of X. Therefore, LY is an upper bound for Y in (X, ⊆): it is an element of X, that contains every element of Y. As X is nonempty, and every totally ordered subset of (X, ⊆) has an upper bound in X, Zorn's lemma asserts that X has a maximal element. In other words, there exists some element Lmax of X satisfying the condition that whenever Lmax ⊆ L for some element L of X, then L = Lmax.” とやっているので、⊆ による順序は Hilbert space でも そのまま使える あとは、直交基底と 位相的な収束の話を 色付けすれば、よさそうだ (参考) https://en.wikipedia.org/wiki/Hilbert_space Hilbert space Hilbert dimension As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94] For instance, since l^2(B) has an orthonormal basis indexed by B, its Hilbert dimension is the cardinality of B (which may be a finite integer, or a countable or uncountable cardinal number). The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space). As a consequence of Parseval's identity,[95] if {ek}k ∈ B is an orthonormal basis of H, then the map Φ : H → l^2(B) defined by Φ(x) = ⟨x, ek⟩k∈B is an isometric isomorphism of Hilbert spaces: it is a bijective linear mapping such that ⟨Φ(x),Φ(y)⟩l^2(B)=⟨x,y⟩H for all x, y ∈ H. The cardinal number of B is the Hilbert dimension of H. Thus every Hilbert space is isometrically isomorphic to a sequence space l^2(B) for some set B. http://rio2016.5ch.net/test/read.cgi/math/1738367013/191
192: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 11:10:23.00 ID:hl9U/ln8 ”<公開処刑 続く> (『 ZF上で実数は どこまで定義可能なのか?』に向けて と (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”] >>185-188 >あきらめたらそこで試合終了ですよ ふっふ、ほっほ こっちは、<公開処刑 続く> (あほ二人の”アナグマの姿焼き")のつもり しかし、低レベルのバトルでは、観客も面白くないだろうから いまは おサル>>7-10の、選択公理(選択関数)の誤解・無理解を 徹底的に あぶりだしているのですw ;p) おサルにしたら あきらめたらそこで試合終了 だわなw がんばれよ、おサルww ;p) さて >>185 (引用開始) > ある空間の 基底の存在定理、次元定理から > 具体的な 基底候補が、実際の基底として採用できることが分る じゃ、RをQ上の線形空間としてみたときの基底を、具体的に構成してみてくれる? できるものならな (引用終り) ・いま、”具体的な 基底候補”があれば という話だ それに対して、具体的に構成できないことを持ち出しても 反論になってないぞw ;p) ・RをQ上の線形空間としてみたときの基底 (R/Qで) すべての基底を 具体的に明示することはできないが ある有限n個の 無理数で 基底 b1,b2,・・,bn を選んで、それらが Q上 一次独立にはできそうだな そして、残りの部分を 存在定理に丸投げすれば、良い n → 可算無限 にできそうな気がする (すぐには 成否の判断ができないが) そして、残りの部分を 存在定理に丸投げすれば、良いw http://rio2016.5ch.net/test/read.cgi/math/1738367013/192
197: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 11:54:28.92 ID:hl9U/ln8 >>192 補足 >n → 可算無限 にできそうな気がする (すぐには 成否の判断ができないが) 例えば √2(=2^1/2), 2^(1/3), 2^(1/4),・・ 2^(1/m),・・ 2^(1/n),・・・ で、任意 2^(1/m) - 2^(1/n) (m≠n)が 有理数でなければ良い あるいは √2(=2^1/2), 2^(1/2)^2, 2^(1/2)^3,・・ 2^(1/2)^m,・・ 2^(1/2)^n,・・・ で、任意 2^(1/2)^m - 2^(1/2)^n (m≠n)が 有理数でなければ良い mとnの2重数学的帰納法で証明できるかも・・、しらんけど http://rio2016.5ch.net/test/read.cgi/math/1738367013/197
202: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 13:33:23.30 ID:hl9U/ln8 <公開処刑 続く> (『 ZF上で実数は どこまで定義可能なのか?』に向けて と (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”] >>199 (引用開始) >n → 可算無限 にできそうな気がする (すぐには 成否の判断ができないが) >mとnの2重数学的帰納法で証明できるかも・・、しらんけど できません。 数学的帰納法の結論は「任意の自然数に関する命題P(n)が真」です。 高校数学からやり直した方が良いのでは? (引用終り) ふっふ、ほっほ それ、下記の”F線形空間F[x]は任意の自然数より大きい次元の部分空間を持つから無限次元である” の証明 by 都築暢夫 広島大 (いま東北大) が間違っていると? それ 都築暢夫先生に教えてあげてね!w ;p) なお、おサルさん>>7-10は 存在を示す 選択公理(選択関数)のポジティブな面を見ようとせず ネガティブな面のみを強調するが、それ 自分の数学レベルの低さを自白しているに等しい (参考) (rio2016.5ch.net/test/read.cgi/math/1736907570/16 より再録) www.math.sci.hiroshima-u.ac.jp/algebra/member/files/tsuzuki/04-21.pdf 代数学I 都築暢夫 広島大 F を体とする P3 例3.2.多項式環F[x]. F[x]nは1,x,··· ,xnを基底に持つn+1次元線形空間である F線形空間F[x]は任意の自然数より大きい次元の部分空間を持つから無限次元である 証明. 1,x,··· ,xnがF[x]nの基底になること: 1,x,··· ,xnがF[x]nを生成することは明らか a0,··· ,an∈Fに対してa0+a1x+···+anxn=0とするとき、a0=a1=···an=0となることをnに関する帰納法で証明する n=0のときは明らか。n−1まで成り立つとする。x=0とすると、a0=0である (a1+ a2x+···+anxn−1)x=0より、a1+a2x+···+anxn−1=0である 帰納法の仮定から、a1=···an=0となる。よって、1,x,··· ,xnは一次独立である したがって、1,x,··· ,xnはF[x]nの基底になる■ (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1738367013/202
207: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 17:32:20.96 ID:hl9U/ln8 >>206 (引用開始) 選択公理を仮定すれば、両方共に0ではない有理数 a≠0、b≠0 の 有理係数の γ=lim_{n→+∞}(1+…+1/n−log(n+a)) a>-1 に関する一次方程式 aγ=b の解 γ=b/a が存在するから、 その系としてγは有理数であることが示される (引用終り) これは、おっちゃんか お元気そうで何よりです。 今後ともよろしくね (^^ http://rio2016.5ch.net/test/read.cgi/math/1738367013/207
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
3.959s*