スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (251レス)
前次1-
抽出解除 レス栞

89
(3): 06/05(木)07:42 ID:ELDakrES(1) AAS
>>87
>決定番号は定義から自然数。いかなる自然数も有限値だから決定番号が有限値である確率は1。

そこがトリックです
決定番号は、単なる自然数ではない
かつ、自然数Nが無限集合であることから、パラドックスが生じる
(例えば、下記のサンクトペテルブルクのパラドックス(確率のパラドックス)も、無限によるパラドックス)

いまの箱入り無数目において >>5
省34
90
(1): 06/05(木)09:29 ID:byvIcv57(1) AAS
>>89
>>決定番号は定義から自然数。いかなる自然数も有限値だから決定番号が有限値である確率は1。
>そこがトリックです
>決定番号は、単なる自然数ではない
言い訳不要。確率0は間違いで確率1が正しいことを認めるか?

>かつ、自然数Nが無限集合であることから、パラドックスが生じる
直感的には箱をひとつ選んで他の箱を開封し中身を見ても選んだ箱の中身を当てられるはずがない、しかし箱入り無数目の方法では高確率で当てられるからパラドックス。
省9
91: 06/05(木)09:40 ID:ImGLpNz8(1) AAS
>>89
>さて、これで
>発行枚数10^nで n→∞ (無限枚発行)とすると
>当選確率は0だ

そりゃそうだろ

当り列が0.999 …(延々と9が続く)とする

ほとんど全ての列は当り番号と尻尾同値でない
省6
92: 06/06(金)02:56 ID:IafuK0N2(1/8) AAS
>>89
君が言いたいのは「R^Nから2元を選択したときそれらが偶然しっぽ同値である確率は0」とのことのようだが、箱入り無数目とは何の関係も無い。ゼロ点で落第。
ちなみに、選択公理を仮定すればR^Nの任意の元に対して必ずしっぽ同値類の代表元が存在し、それらがしっぽ同値である確率は1。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.067s