スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
58: 132人目の素数さん [] 2025/02/20(木) 08:38:32.36 ID:+AxBc79u >>57 「箱入り無数目」はもはや完全に解決してしまったのでつまらん ということなら完全に同意する したがって名誉教授から1に直接言ってやってくれ 「もうこんなスレ立てるのはやめろ」と http://rio2016.5ch.net/test/read.cgi/math/1736907570/58
273: 132人目の素数さん [sage] 2025/07/21(月) 15:47:33.04 ID:60RWf/A5 "可算無限個のサイコロを投げます"より 転載しておく https://rio2016.5ch.net/test/read.cgi/math/1752265419/221 (引用開始) ”>>58 >箱入り無数目は 全事象Ωが発散している Ω={1,2} のどこが発散してるのか言ってみ?” だったろ? この あとでやるよ (引用終り) 1)まず、簡単に箱5つで考えよう それを 数列 s1,s2,s3 ,s4,s5 とする si | i=1〜5 は、コイントスで {0,1}が入る ({1,2}→{0,1}とした) 2)箱入り無数目同様に、しっぽ同値を考える (箱入り無数目は 右ご参照 https://rio2016.5ch.net/test/read.cgi/math/1736907570/1-3) 数列 s'1,s'2,s'3 ,s'4,s'5 で、しっぽ同値だと s'5=s5 だ だから、一つの同値類の場合の数は 2^4 で、全体Ωは 2^5 3)いま、列長さL(L>5)を考える 上記同様 s1,s2,s3 ,s4,s5・・,sL-1,sL s'1,s'2,s'3 ,s'4,s'5・・,s'L-1,s'L で、しっぽ同値だと s'L=sL だ だから、一つの同値類の場合の数は 2^(L-1) で、全体Ωは 2^L 4)箱入り無数目は、列長さが可算無限で自然数の集合Nと同じで 全体Ωは 2^N、一つの同値類の場合の数も2^(N-1)=2^N (なお、2^Nは非可算無限だね(下記)) よって、『箱入り無数目は 全事象Ωが発散している』 (参考) https://ja.wikipedia.org/wiki/%E9%9D%9E%E5%8F%AF%E7%AE%97%E9%9B%86%E5%90%88 非可算集合 例 非可算集合の例として最も知られているものは実数全体の集合 R R の濃度をしばしば連続体濃度と呼び c や 2^ℵ0 または ℶ1 (beth-one) で表す http://rio2016.5ch.net/test/read.cgi/math/1736907570/273
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.227s*