スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (272レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
239: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/15(日) 10:12:19.56 ID:lv2xCBEK >>238 つづき さて、用語が整備出来たところで 冒頭>>1に戻る (引用開始) 時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 (引用終り) ここまでが、一つの試行だ つまり 1)可算無限個の箱に 実数を入れる ある一つの数を残して、他の箱を開ける 最後に残した箱の数を予測する 2)最後に残した箱の数の予測が、ピタリと的中すれば あなたの勝ち。的中でなければ、負け 3)よって、全事象Ω(標本空間)は、 実数列の集合 R^N s = (s1,s2,s3 ,・・・)∈R^N を集めたものと見ることができる さて、箱入り無数目では、s'=(s'1, s'2, s'3,・・・ )∈R^Nなる 数列のしっぽ同値を考えるという戦略を提唱する しっぽ同値の数列を加えると この場合には s = (s1,s2,s3 ,・・・) と s'=(s'1, s'2, s'3,・・・ )∈R^N を、一つの試行と考えることもできる http://rio2016.5ch.net/test/read.cgi/math/1736907570/239
240: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/15(日) 10:29:45.54 ID:lv2xCBEK >>239 つづき s = (s1,s2,s3 ,・・・) と s'=(s'1, s'2, s'3,・・・ )∈R^N を、一つの試行と考えたとき >>1のような 決定番号dを考えることができる もし、問題列 s = (s1,s2,s3 ,・・・) について 決定番号d を 推測できる方法があれば 問題列で、d+1以降の数列のしっぽの箱を開けて 問題列の属する 同値類を特定して 同値類代表 s'=(s'1, s'2, s'3,・・・ )を知り 決定番号の定義から(>>1) sd=s'd とできて sdを箱を開けずに的中できて 回答者の勝ち ところで、このような 決定番号d は、存在するけれども あたかも 測度論の零集合類似の性質を持つのです つまり、決定番号dは あきらかに →∞ に発散するので その集合は 無限集合になる 例えれば、可算無限列の長さを考えると 明らかに可算無限長で 一方、決定番号dまでの長さ 1〜d は、有限長さ よって、d/∞=0 よって、決定番号dは、可算無限長において、先頭の長さ0部分(零集合)での 確率計算にすぎない ここが、箱入り無数目のトリック部分 可算無限長の 先頭の長さ0部分(零集合)で 確率99/100を導く どっこい その実 (99/100)*0=0 の議論でしかない ここは、我々の日常が 数学的には 無限集合のNやRを想定しているが その実、有限の数の中で暮らしている こと それが、日常生活では 全く無意識で 当たり前になっている 真に無限大を考えることが殆ど無いので 箱入り無数目のような場合に遭遇すると 無意識の日常有限の思考に引き摺られて 無限トリックだと なかなか気づかない そういう 箱入り無数目トリックの仕掛けなのです http://rio2016.5ch.net/test/read.cgi/math/1736907570/240
243: 132人目の素数さん [] 2025/06/15(日) 11:03:01.83 ID:Eap/oGjV >>239 >ここまでが、一つの試行だ はい、大間違い。 君の確率の用語確認は全くの無駄になったw >例えばサイコロ投げの場合は、サイコロを投げるという実験そのものが試行であり 箱入り無数目の場合は、100面サイコロを投げる(=1〜100 のいずれかをランダムに選ぶ)という実験そのものが試行な http://rio2016.5ch.net/test/read.cgi/math/1736907570/243
244: 132人目の素数さん [] 2025/06/15(日) 11:07:33.26 ID:Eap/oGjV >>239 >3)よって、全事象Ω(標本空間)は、 > 実数列の集合 R^N s = (s1,s2,s3 ,・・・)∈R^N > を集めたものと見ることができる 試行を誤読してるので標本空間も間違う。 100面サイコロを投げることが試行だから正しい標本空間は{1,2,...,100}。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/244
246: 132人目の素数さん [sage] 2025/06/16(月) 11:28:22.70 ID:F4qr5Fw1 >>238-241 そもそもd_i、D_iが確率変数のとき P(d_i<=D_i)とP(d_i<₌D)は異なる 任意のε>0に対して、 P(d_i<D)<εだとしても P(d_i<=D_i)<εは導けない 任意のε>0に対して、 P(D_i<D)<εだから http://rio2016.5ch.net/test/read.cgi/math/1736907570/246
249: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/18(水) 13:52:59.74 ID:1ZjEJMOG >>247 & >>239 補足 1)いま、出題の列 s = (s1,s2,s3 ,・・・) で コイントスの 0,1 の2進値をランダム入れたとする 対するしっぽ同値列 s'=(s'1, s'2, s'3,・・・ )で 決定番号d のとき、(s1,s2,s3 ,・・,sd-1) と(s'1, s'2, s'3,・・,s'd-1) で場合を数を考えると、sd-1≠s'd-1で無ければならないが、1からd-2は自由だから 2^(d-2)通り 2)dには上限なく 自然数全体を渡るから 決定番号の集合濃度は 2^Nで、アレフ ℵ1 非可算無限濃度 つまり、同値類は集合としてみた場合は、全体は非可算集合です 一方、有限の決定番号d の場合の数は 2^(d-2)で、有限です 3)いま、『箱入り無数目』の>>2のように 100個の決定番号d1〜d100と その最大値dmaxについて考えると "d1〜d100 ≦ dmax"の議論は、可算無限長の 先頭の長さ dmax の有限の議論であり それは、非可算無限中に比べれば 無限小に等しい(即ち確率零の集合の中の話) 即ち、これを 出題列を有限長さの針に例えると、有限di≦dmaxの議論は、あたかもほんの針の先の中の議論なのです 4)さて、これを>>240-241の確率分布の減衰の視点で見ると 『箱入り無数目』においては、減衰どころか 裾が増大し 全体として発散している 即ち、上記2進値のとき、dが1増えると 場合の数は2倍になる 10進値ならば10倍、n進値ならばn倍、全自然数NならばN倍、全実数Rならば非可算倍*)となる ( *)n次元R^n→n+1次元R^n+1 ということ) 5)さて、最後の例 全実数Rなら非可算倍で、ユークリッド空間で次元が違う話です(全体では無限次元空間) 『箱入り無数目』はトリックで、有限の99/100の話に矮小化される そのトリックとは、本来は可算無限長の数列について、うまく 列先頭の有限長の話にすり替える**) そこが、人は日常 真無限に不慣れで かつ 有限の世界に暮らしているゆえ まんまと d1〜d100 ≦ dmaxに乗せられ騙されるのです 分かってしまえば、他愛もない子供だましにすぎないのです **)ここを、確率論の観点から補強すると 1)0,1 の2進値を、箱に入れた場合、決定番号d とは、上記の通り 二つの数列 s = (s1,s2,s3 ,・・・) s'=(s'1, s'2, s'3,・・・ )で d番目以降の可算無限の数が一致する 即ちその確率 P=(1/2)^N=0 2)勿論、10進値でも P=(1/10)^N=0 n進値でも P=(1/n)^N=0 3)そして、任意実数ならば、P=(1/R)^N=(0)^N (即ち(1/連続濃度)^N(可算乗)です) 『箱入り無数目』のトリックとは、可算無限長の数列の先頭の確率零の集合内の話にすり替えて 99/100を導く。結局 (99/100)x0=0 なのです■ http://rio2016.5ch.net/test/read.cgi/math/1736907570/249
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.465s*