スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (256レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
127: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/07(土) 08:51:13.98 ID:OvOEHj+C >>126 >1列でダメだと2列以上でもダメという謎論理こそがゴマカシ >論理が分からずごまかす落ちこぼれに数学は無理 1)”謎論理”ではないな 1列において 箱入り無数目を成り立たせている(ように見せる) 数学の原理を、しっかり考察しようということだよ 箱入り無数目とは 発散する量の決定番号を使って、それがあたかも有限であるように扱うトリックを使っていることがわかる>>124 即ち、箱入り無数目で ある1列の可算無限数列のしっぽ同値類とその代表から 決定番号dなるものを考えて d<d' なるd'を取ることができれば、d'+1以降の箱を開けて 同値類を決定し、代表列を決定し その代表列の d'番目の数を使って 決定番号の定義により、代表列のd'番目の値=出題の実数列のd'番目の値>>124 とできるというものだが 2)ところが、決定番号dは全ての自然数Nを渡り、従って 無限集合を成す このとき、よく知られた ヒルベルトホテルやデデキント無限と類似のパラドックスが起きる>>112 つまり、箱入り無数目の 1列の可算無限数列の決定番号d において 決定番号の集合は 無限集合で dは発散して 非正則分布(>>8)を成すから ”d<d' なる d'”は、存在はするけれども、あたかも零集合のような存在であって(以下 用語の濫用で 零集合と呼ぶ) 上記のような d'を使う 数当てパズルの戦略は、現実には 機能しない(>>124で論じた通り) 3)これを踏まえて、2列の場合を考察すると この場合において 人々は 決定番号 d1.d2 が取れて d1<d2 or d1>d2 が成り立ち、確率1/2が導かれると思い込む(いま 簡便にd1=d2は 除外するとする) ところが、上記2)のように 決定番号 d1は、零集合であるから d1.d2 は、単に零集合を二つ使ったトリックにすぎないことが分かる ゆえに、100列だろうが 100人の数学者だろうが ナンセンスなパズルにすぎない!■ http://rio2016.5ch.net/test/read.cgi/math/1736907570/127
129: 132人目の素数さん [] 2025/06/07(土) 09:03:10.38 ID:NEDRGK6I >>127 >d1<d2 or d1>d2 が成り立ち、確率1/2が導かれると思い込む(いま 簡便にd1=d2は 除外するとする) 君、決定番号は自然数であることを認めたよね? 「任意の二つの自然数d1,d2に対して d1<d2,d1>d2,d1=d2 のいずれか一つが成り立つ。」の反例が有ると言ってる? じゃ示して http://rio2016.5ch.net/test/read.cgi/math/1736907570/129
130: 132人目の素数さん [] 2025/06/07(土) 09:06:05.24 ID:YE1vVdKF >>127 >『 d<d' なる d' 』は、存在はするけれども、あたかも零集合のような存在であって アタオカ? 『 d<d' なる d 』なら(無限集合の中の有限部分集合だから)零集合のような存在というのは分かるが 『 d<d' なる d 』は、(無限集合の中の有限部分集合の補集合だから)むしろほとんどすべてだろ? つまり現代数学の系譜 雑談 ◆yH25M02vWFhP の「ナイーブ測度論」に基づくなら 1列の場合も、適当にある自然数d’を挙げれば ほとんどすべての場合において、d’は既に決まっている1列の決定番号dを上回る(d’>d) ただその場合、逆にd’が先に決まっているとして、列を後から作るとすると ほとんどすべての場合において、列の決定番号dはd’を上回る(d’<d) これが矛盾、パラドックスだというなら、 それは貴様の「ナイーブ測度論」が嘘だってことだ 実際、そうだから仕方ない やっぱ大学1年の微積と線形代数で落ちこぼれた高卒一般人の 「ナイーブ測度論」は初歩から破綻したか 何の驚きもないが(呵々大笑) http://rio2016.5ch.net/test/read.cgi/math/1736907570/130
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.062s*