スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
112: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/06(金) 11:28:36.58 ID:tJ92Py3q >>101 追加自己レス >・あなたの論:「選択公理を仮定すると 云々かんぬんで、パラドックスは何でも証明できる」は > 成立しない 箱入り無数目は、もう一つ 無限パラドックスも 関係している 1)具体的には、無限パラドックスの典型は、ヒルベルトホテル(下記)とか あるいは、デデキント無限(下記のように 同数である(同濃度の)真部分集合が存在する)がある 2)例えば、自然数Nにおいては 奇数と偶数が存在して、直感的には 奇数と偶数は、自然数Nの半分で 偶数/自然数N=1/2 だろうと。ところが、両者は同数(同濃度)であるから、偶数/自然数N=1 も正しい (余談だが、数学的には しばしば ∞/∞ は 不定形とされる) 3)さて、いま 自然数Nから、一つの自然数aを取る。自然数Nは無限集合だから、当然平均値は無限大に発散している だから、次に ランダムに 一つの自然数bを取ると、期待としては a<b が成り立つべし (∵ 集合N中には、aより大の数が無限にあり、aより小の数は有限だから) 4)これを、決定番号に当てはめると いま、箱入り無数目で、Aさんが 好きな数を箱に入れて 可算無限列を作った 相手のBさんもまた、好きな数を箱に入れて 可算無限列を作った 箱入り無数目の手法で Aさんの列の決定番号dAと Bさんの列の決定番号dBと が分かる Bさんは、dBを知って Aさんの列で dB+1の箱を開けて、列のしっぽ同値類とその代表を知る 代表のdB番目の数を知って、その数が AさんのdB番目の箱の数と一定していると唱える 時枝氏は、この的中確率は1/2だと宣う 5)ところで、4)の論法を 3)と比較すると、これはパラドックスだろう つまり、時枝論法の 確率P(dA<dB)=1/2 が 果たして、無限集合たる 決定番号の集合において 数学的に正しい と言えるのか? そこが大問題で ここが パラドックスになっているのです!w ;p) (参考) https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9 ヒルベルトの無限ホテルのパラドックス パラドックスの内容 無限個の客室があり、「満室」である仮想的なホテルを考える。客室数が有限の場合、「満室であること」と「新たに来た客を泊められないこと」は同値だが(鳩の巣原理)、無限ホテルではそうはならない https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%87%E3%82%AD%E3%83%B3%E3%83%88%E7%84%A1%E9%99%90 デデキント無限 デデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。つまり、A とA の真部分集合B の間に全単射が存在するということである。集合 A がデデキント無限でないとき、デデキント有限であるいう 選択公理を除いたツェルメロ・フレンケルの公理系は、任意のデデキント有限集合は有限個の元を持つという意味での有限である、ということを証明するだけの強さを持たない 選択公理との関係 整列可能な任意の無限集合はデデキント無限である。ACは任意の集合が整列可能であることを述べた整列可能定理と同値であるから、ACから無限集合はデデキント無限集合であるということが簡単に導かれる http://rio2016.5ch.net/test/read.cgi/math/1736907570/112
113: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/06(金) 11:32:12.86 ID:tJ92Py3q >>112 タイポ訂正 Bさんは、dBを知って Aさんの列で dB+1の箱を開けて、列のしっぽ同値類とその代表を知る ↓ Bさんは、dBを知って Aさんの列で dB+1以降の箱を開けて、列のしっぽ同値類とその代表を知る http://rio2016.5ch.net/test/read.cgi/math/1736907570/113
118: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/06(金) 17:15:15.42 ID:tJ92Py3q >>112-113 追加自己レス (引用開始) 4)これを、決定番号に当てはめると いま、箱入り無数目で、Aさんが 好きな数を箱に入れて 可算無限列を作った 相手のBさんもまた、好きな数を箱に入れて 可算無限列を作った 箱入り無数目の手法で Aさんの列の決定番号dAと Bさんの列の決定番号dBと が分かる Bさんは、dBを知って Aさんの列で dB+1以降の箱を開けて、列のしっぽ同値類とその代表を知る 代表のdB番目の数を知って、その数が AさんのdB番目の箱の数と一定していると唱える (引用終り) ここが一番のキモです 1)つまり、箱入り無数目を成り立たせている手法とは i)可算無限の実数列のシッポ同値類を作る(出題の実数列) ii)シッポ同値類の代表を一つ選ぶ iii)出題の実数列と 代表列の比較により 決定番号d(ある番号dから先 この二つの実数列が一致している番号)を得る iv)いま、何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た v)このとき、d'より大きな番号の箱を開けて、出題の実数列の属する同値類をつきとめて 同値類の代表列を使うことができて、代表列のd'+1番目の値を得ることができる 決定番号の定義により、代表列のd'+1番目の値=出題の実数列のd'+1番目の値であるので これにて、めでたく 出題の実数列のd'+1番目の値を的中できる! 2)さて、問題は 上記『何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た』の部分 >>112の3)〜5)に 既に述べたように そのような d'なる値を得ることはできない ∵ 決定番号の集合は、無限集合で その平均値(期待値)は、発散して 非正則分布(>>8)を成すから 3)なので、上記1)〜2)の如く、箱入り無数目を成り立たせている手法が 数学的(原理的)に成り立たない ゆえに、100列だろうが 100人の数学者だろうが ナンセンスなパズルにすぎない!■ http://rio2016.5ch.net/test/read.cgi/math/1736907570/118
119: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/06(金) 17:25:48.11 ID:tJ92Py3q >>118 タイポ訂正 同値類の代表列を使うことができて、代表列のd'+1番目の値を得ることができる 決定番号の定義により、代表列のd'+1番目の値=出題の実数列のd'+1番目の値であるので これにて、めでたく 出題の実数列のd'+1番目の値を的中できる! ↓ 同値類の代表列を使うことができて、代表列のd'-1番目の値を得ることができる 決定番号の定義により、代表列のd'-1番目の値=出題の実数列のd'-1番目の値であるので これにて、めでたく 出題の実数列のd'-1番目の値を的中できる! http://rio2016.5ch.net/test/read.cgi/math/1736907570/119
120: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/06(金) 17:35:27.59 ID:tJ92Py3q >>119 タイポ訂正追加の追加 同値類の代表列を使うことができて、代表列のd'-1番目の値を得ることができる 決定番号の定義により、代表列のd'-1番目の値=出題の実数列のd'-1番目の値であるので これにて、めでたく 出題の実数列のd'-1番目の値を的中できる! ↓ 同値類の代表列を使うことができて、代表列のd'番目の値を得ることができる 決定番号の定義により、代表列のd'番目の値=出題の実数列のd'番目の値であるので これにて、めでたく 出題の実数列のd'番目の値を的中できる! かな? まあ、d<d' なので、>>119も成立だが こちらがキレイだろう ;p) http://rio2016.5ch.net/test/read.cgi/math/1736907570/120
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s