スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (251レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

112
(8): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)11:28 ID:tJ92Py3q(1/5) AAS
>>101 追加自己レス
>・あなたの論:「選択公理を仮定すると 云々かんぬんで、パラドックスは何でも証明できる」は
> 成立しない

箱入り無数目は、もう一つ 無限パラドックスも 関係している
1)具体的には、無限パラドックスの典型は、ヒルベルトホテル(下記)とか
 あるいは、デデキント無限(下記のように 同数である(同濃度の)真部分集合が存在する)がある
2)例えば、自然数Nにおいては 奇数と偶数が存在して、直感的には 奇数と偶数は、自然数Nの半分で
省26
113
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)11:32 ID:tJ92Py3q(2/5) AAS
>>112 タイポ訂正

Bさんは、dBを知って Aさんの列で dB+1の箱を開けて、列のしっぽ同値類とその代表を知る
  ↓
Bさんは、dBを知って Aさんの列で dB+1以降の箱を開けて、列のしっぽ同値類とその代表を知る
118
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)17:15 ID:tJ92Py3q(3/5) AAS
>>112-113 追加自己レス
(引用開始)
4)これを、決定番号に当てはめると
 いま、箱入り無数目で、Aさんが 好きな数を箱に入れて 可算無限列を作った
 相手のBさんもまた、好きな数を箱に入れて 可算無限列を作った
 箱入り無数目の手法で Aさんの列の決定番号dAと Bさんの列の決定番号dBと が分かる
 Bさんは、dBを知って Aさんの列で dB+1以降の箱を開けて、列のしっぽ同値類とその代表を知る
省17
119
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)17:25 ID:tJ92Py3q(4/5) AAS
>>118 タイポ訂正

  同値類の代表列を使うことができて、代表列のd'+1番目の値を得ることができる
  決定番号の定義により、代表列のd'+1番目の値=出題の実数列のd'+1番目の値であるので
  これにて、めでたく 出題の実数列のd'+1番目の値を的中できる!
    ↓
  同値類の代表列を使うことができて、代表列のd'-1番目の値を得ることができる
  決定番号の定義により、代表列のd'-1番目の値=出題の実数列のd'-1番目の値であるので
省1
120: 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)17:35 ID:tJ92Py3q(5/5) AAS
>>119 タイポ訂正追加の追加

  同値類の代表列を使うことができて、代表列のd'-1番目の値を得ることができる
  決定番号の定義により、代表列のd'-1番目の値=出題の実数列のd'-1番目の値であるので
  これにて、めでたく 出題の実数列のd'-1番目の値を的中できる!
    ↓
  同値類の代表列を使うことができて、代表列のd'番目の値を得ることができる
  決定番号の定義により、代表列のd'番目の値=出題の実数列のd'番目の値であるので
省3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.015s