スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
146: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/08(日) 16:07:44.42 ID:cYYLjQao >>144 論点がズレているし ”あなたの読解は、問題の設定と解答の流れに沿ったものとして非常に合理的です”w ってさ AIの ”ヨイショ”だよ 「大将、あんたはエライ!」と ”ヨイショ”しているw(AIも 商売人だね or AI芸者ww だわwww(^^) えーと、まず Q:確率論で 裾の重い確率分布の定義とは? と AIに聞いてみて すると、確率分布の裾の減衰の話が出てくるだろ? それで、本来は 正規分布のように、→∞ まで 範囲を考えるときは →∞ で減衰しないといけない (そうしないと 積分なり和が発散するから) 正規分布は指数関数的に減衰するんだ 一方で、裾の減衰が遅い分布というものがある これを 確率論では、裾の重い確率分布という よく知られるように、定積分 ∫ 1〜∞ (1/x)dx は、収束しない(つまり発散だ) ∫ 1〜∞ (1/x^(n))dx と指数n を入れて考えるとき、指数nが1より大きく 十分大きいときは 収束が早い 一方、指数nが1より大きいが 1に近いとき 収束が遅い そして、指数n=1 のとき もう収束しないのです (1/xの無限大までの定積分が発散することは、学部1年生の常識だろう) さて、指数n=-1 のとき 即ち 定積分 ∫ 1〜∞ xdx は? 当然 収束しない! これを、箱入り無数目に当て嵌めると 明らかに 決定番号d は 自然数N全体を渡るから d→∞ までを考える必要があるのです で、決定番号d は、dが大きくなるときに、果たして減衰するか? 答えは No。ならば、確率分布として使えない! (∵ 積分ないし和が、発散するから) このことを、>>8 において ”非正則分布は確率分布ではない!?” https://ai-trend.jp/basic-study/bayes/improper_prior/ で 注意喚起しているのです http://rio2016.5ch.net/test/read.cgi/math/1736907570/146
150: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/08(日) 18:30:26.48 ID:cYYLjQao >>149 >AIは信用できんな。質問者の誘導によって答えが変わりうるから。 ありがとうございます スレ主です バカとハサミは、使いよう・・・、これはいままでの格言 これからは バカとハサミとAIは、使いよう!(21世紀格言w) だな ”素直に問題全文食わせて、質問すればいいだけ”と宣うやつがいるww ;p) AIは、世に 沢山の文献がある場合、正しい回答になる可能性が高い(多数文献の集約意見が回答になるだろう) しかしながら、文献が殆どないことに対する回答は 相当に マユツバと 思うべし!!!www ;p) http://rio2016.5ch.net/test/read.cgi/math/1736907570/150
154: 132人目の素数さん [] 2025/06/08(日) 23:17:42.90 ID:cYYLjQao >>151-152 ありがとうございます 固有名詞は別として >箱入り無数目の成立に頑強に反対したのは、最近見たところでは >セタと、ミロクとかいうチンピラくらいしかいないのでは。 はて? ”最近見たところでは”と言われるとは・・、かなり以前からのお客様か・・ さて、以前の話で 御大は数年前は 「読んでいる途中で気分が悪くなった・・(ので最後まで読まなかった)」といっていたが 最近・・、というか >>30の 2025/01/15 に "論理パズルとして完結していることは ロジックに穴がないことが確認できた時点で 理解できたのだが 出題者と回答者が競い合うゲームと見たときには 戦略の実行過程にやや不明確な点が 残っている" などといわれた まあ 1/15 は 松の内で、お屠蘇がまだ残っていたのでしょうかね? ちょっと補足しておくと 1)ロジックとして いま 簡単に2列X,Yで (詳細は>>1-2ご参照) 決定番号dX,dYが 何らかの手段で与えられたとしたら *) 簡便に dX<dY として、X列において dY+1 番目よりしっぽの箱を開けて 列Xの属する同値類を知り、代表を知り、代表のdY 番目の数が X列のdY 番目の数であるとできる(決定番号の定義より) そして、問題をこの決定番号dX,dYに限るとすれば、dX=dYとなる場合が無視できるとして 「確率 dX<dY は 1/2」となる 2)この論の 一番問題は、”決定番号dX,dYが 何らかの手段で与えられたとしたら *)”の部分だが もし、これが正当化できるとするならば、前にも述べたが 実関数f(x)で、区間[a,b]において f(x1),f(x2),f(x3),・・・ |x1,x2,x3,・・・∈[a,b] とできて ある未知の関数値f(xn)が、他の f(x1),f(x2),f(x3),・・,f(xn-1),f(xn+1),f(xn+2),・・・から 確率99/100 あるいは 確率1-εで決まる となる しかし、正則でもない 単なる連続関数(あるいは非連続関数)において、確率1-ε とできるはずがない そんなことを認める 関数論の数学者はいないだろう 3)では、”決定番号dX,dYが 何らかの手段で与えられたとしたら *)”の何が問題なのか? その解明のためには、決定番号dX,dY 分布を考える必要があるのです つまり、いま決定番号が 有限集合M={1,2,3・・,m}としょう(列が有限長の場合はこれ) 簡単に、dX=50,dY=60 とする m=100なら それもありだが もし、 m=10^12(=1兆)ならば? 「なんで、二つともそんな小さい決定番号なのか?」となる そして、いま箱入り無数目は、”無数目”なので m→∞ だから、dX=50,dY=60 のような小さな値になるのは ヘンなのです つまり、”無数目”なので m→∞ だから、いかなる大きな しかし 有限の dX,dY を取ったとしても 上記 ”dX=50,dY=60”vs " m=10^12(=1兆)" と同様になるのです 4)これは、非正則分布の話で >>8で取り上げています 非正則分布を 思わず知らず使ってしまったことが、”まずい”ということ 非正則分布の中で「確率 dX<dY は 1/2」と主張しても、それは あたかも 零集合の中の大小比較にすぎない (端的にいえば、全事象Ωの測度が ∞に発散しているので (1/2)*0=0 )■ http://rio2016.5ch.net/test/read.cgi/math/1736907570/154
155: 132人目の素数さん [] 2025/06/08(日) 23:26:00.18 ID:cYYLjQao >>154 タイポ訂正 その解明のためには、決定番号dX,dY 分布を考える必要があるのです ↓ その解明のためには、決定番号dX,dYの 分布を考える必要があるのです http://rio2016.5ch.net/test/read.cgi/math/1736907570/155
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.017s