スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
127: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/07(土) 08:51:13.98 ID:OvOEHj+C >>126 >1列でダメだと2列以上でもダメという謎論理こそがゴマカシ >論理が分からずごまかす落ちこぼれに数学は無理 1)”謎論理”ではないな 1列において 箱入り無数目を成り立たせている(ように見せる) 数学の原理を、しっかり考察しようということだよ 箱入り無数目とは 発散する量の決定番号を使って、それがあたかも有限であるように扱うトリックを使っていることがわかる>>124 即ち、箱入り無数目で ある1列の可算無限数列のしっぽ同値類とその代表から 決定番号dなるものを考えて d<d' なるd'を取ることができれば、d'+1以降の箱を開けて 同値類を決定し、代表列を決定し その代表列の d'番目の数を使って 決定番号の定義により、代表列のd'番目の値=出題の実数列のd'番目の値>>124 とできるというものだが 2)ところが、決定番号dは全ての自然数Nを渡り、従って 無限集合を成す このとき、よく知られた ヒルベルトホテルやデデキント無限と類似のパラドックスが起きる>>112 つまり、箱入り無数目の 1列の可算無限数列の決定番号d において 決定番号の集合は 無限集合で dは発散して 非正則分布(>>8)を成すから ”d<d' なる d'”は、存在はするけれども、あたかも零集合のような存在であって(以下 用語の濫用で 零集合と呼ぶ) 上記のような d'を使う 数当てパズルの戦略は、現実には 機能しない(>>124で論じた通り) 3)これを踏まえて、2列の場合を考察すると この場合において 人々は 決定番号 d1.d2 が取れて d1<d2 or d1>d2 が成り立ち、確率1/2が導かれると思い込む(いま 簡便にd1=d2は 除外するとする) ところが、上記2)のように 決定番号 d1は、零集合であるから d1.d2 は、単に零集合を二つ使ったトリックにすぎないことが分かる ゆえに、100列だろうが 100人の数学者だろうが ナンセンスなパズルにすぎない!■ http://rio2016.5ch.net/test/read.cgi/math/1736907570/127
131: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/07(土) 11:39:06.67 ID:OvOEHj+C 順番に行こうか >>130 >『 d<d' なる d' 』は、存在はするけれども、あたかも零集合のような存在であって 『 d<d' なる d 』なら(無限集合の中の有限部分集合だから)零集合のような存在というのは分かるが 『 d<d' なる d 』は、(無限集合の中の有限部分集合の補集合だから)むしろほとんどすべてだろ? (引用終り) 誤解・誤読がある 1)いま 有限の自然数Mを取って {1,2,3,・・・,M}なる集合を考える この平均値は およそM/2 だ。だから平均値(期待値)も およそM/2 2)ここで、M→∞ として 自然数全体Nを考えると その 平均値(期待値)は →∞ に発散している 3)つまり、自然数全体Nから無作為*)に dを選んだとき dの平均値(期待値)は →∞ に発散していると考えるべき なので、『 d<d' なる d' 』の意味は、本来発散しているdが たまたま有限の d'以下 になっているということです 注*) 実は、自然数全体Nからの「無作為」の数学定義が問題になるが、いまの場合は 箱入り無数目の簡単な説明に使うだけなので、スルーとします 次に >>129 >「任意の二つの自然数d1,d2に対して d1<d2,d1>d2,d1=d2 のいずれか一つが成り立つ。」の反例が有ると言ってる? d1=d2は無視して、無限集合たる自然数Nから 二つの自然数d1,d2を取って、素朴に確率P(d1<d2)=1/2 とする論法は 非正則分布をあたかも 通常の確率分布のように扱っているので ダメってことですよ(>>8を百回音読してね) 次に >>128 自然数のそれぞれに対して確率が0だとする 測度は可算加法性を有するので 自然数全体の確率も0になるが、 決定番号はかならず自然数の値をとり すなわち確率1であるので矛盾! (引用終り) これも 非正則分布をあたかも 通常の確率分布のように扱っているので ダメってことですよ(>>8を百回音読してね) <補足> 1)ルベーグ測度では 可算集合の測度は0 https://ja.wikipedia.org/wiki/%E3%83%AB%E3%83%99%E3%83%BC%E3%82%B0%E6%B8%AC%E5%BA%A6 2)数え上げ測度では、自然数全体Nの測度は∞ https://ja.wikipedia.org/wiki/%E6%95%B0%E3%81%88%E4%B8%8A%E3%81%92%E6%B8%AC%E5%BA%A6 この場合、全事象が∞なので 「確率分布ではない!」>>8 が もし、個々の事象を無理に考えれば d/∞=0 となって 零集合類似になるってことです 以上 http://rio2016.5ch.net/test/read.cgi/math/1736907570/131
134: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/07(土) 13:06:50.48 ID:OvOEHj+C 反論はそれだけか ならば、逝って良しw http://rio2016.5ch.net/test/read.cgi/math/1736907570/134
140: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/07(土) 23:27:14.70 ID:OvOEHj+C >>137 >なぜなら、箱の中身は定数であって確率変数ではないから >決定番号の分布とかいう難しいものは全く考える必要がない 10年間進歩がないね、君の頭は 以前は”固定”とか、叫んでなかったかな? その”箱の中身は定数”とかの部分について 以前にも、言ったけど ”確率変数”のこと、全く分ってないよね、君は ”確率変数”に対して ”定数”かね? 中学生の連想ゲームか? 変数 vs 定数ね? 幼稚な頭しているねw ;p) まず、下記の 重川 確率論基礎(京大)を、百回音読してね (>>8より) https://www.math.kyoto-u.ac.jp/~ichiro/index_j.html 重川一郎 https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf 2013年度前期 確率論基礎 次に、Copilot君に ご登場願うので 以下百回音読してね ;p) (下記『確率変数は、確率空間上で定義される関数です』を追加百回音読して。それで分らないなら、大学へ聴講にいけ) Q:確率空間と 確率変数の関係を 説明して A:確率空間と確率変数の関係を説明します。 1. 確率空間とは? 確率論の基本的な枠組みとして、確率空間は次の3つの要素から構成されます: ・標本空間(サンプル空間) ( Ω ) → すべての可能な結果(試行の結果)の集合。例えば、サイコロを振る場合は ( Ω = {1,2,3,4,5,6} )。 ・σ-代数(シグマ代数) ( F ) → ( Ω ) の部分集合のうち、確率を定義できる集合族。確率論では、測度論的な扱いが必要なため、適切な集合族を選ぶ。 ・確率測度 ( P ) → ( P: F → [0,1] ) の関数であり、各事象(部分集合)に対して確率を割り当てる。例えば、サイコロの目が偶数である確率は ( P({2,4,6}) = 3/6 )。 この3つの組 (Ω, F, P) を 確率空間 と呼びます。 つづく http://rio2016.5ch.net/test/read.cgi/math/1736907570/140
141: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/07(土) 23:27:37.37 ID:OvOEHj+C つづき 2. 確率変数とは? 確率変数は、確率空間上で定義される関数です。 つまり、確率変数 ( X ) は標本空間 ( Ω ) から実数(または他の数学的対象)への写像: [ X: Ω → R ] 各 ( ω ∈ Ω ) に対して、( X(ω) ) は実数値を取ります。 例えば、サイコロの目を表す確率変数 ( X ) を考えると、 [ X(1) = 1, X(2) = 2, X(3) = 3, X(4) = 4, X(5) = 5, X(6) = 6 ] となります。 確率変数 ( X ) が適切な確率論の枠組みで扱えるようにするためには、可測性の条件を満たす必要があります。 つまり、( X ) の逆像 ( X^{-1}(B) ) が ( F ) に含まれるような集合 ( B ) に対して、確率を定義できることが必要です。 3. 確率空間と確率変数の関係 確率変数は、確率空間の標本点 ( Ω ) に対して数値を割り当てる関数であり、確率空間の構造を利用して確率を定義します。 ・確率変数 ( X ) によって、標本空間 ( Ω ) の事象を実数値の事象に変換できる。 ・確率測度 ( P ) を用いて、確率変数の値が特定の範囲に入る確率を計算できる。 ・確率変数の分布(確率分布)は、確率空間上の測度 ( P ) を通じて決まる。 例えば、確率変数 ( X ) の値が 3 以下である確率は、 [ P(X ≦ 3) = P({Ω ∈ Ω | X(Ω) ≦ 3}) ] のように、確率空間上の事象の確率として表されます。 4. まとめ ・確率空間 (Ω, F, P) は、確率論の基盤となる枠組み。 ・確率変数 ( X ) は、標本空間 ( Ω ) から実数への関数であり、確率空間の構造を利用して確率を定義する。 ・確率変数の分布や確率計算は、確率空間の測度 ( P ) を通じて決まる。 この関係を理解すると、確率論のさまざまな概念(期待値、分布関数、条件付き確率など)がより明確になります。さらに詳しく議論したい場合は、具体的な確率変数の例や分布の性質について掘り下げることもできます! (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1736907570/141
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.015s