スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (256レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
10: 132人目の素数さん [] 2025/01/15(水) 11:31:06.43 ID:ZCTGHyhi つづき (参考) mine-kikaku.co.jp/index.php/2022/10/29/post-9074/ 峰企画 確率 – 2008年東工大 数学 第3問 20230227 2008年東工大 数学 第3問 はそれぞれの目の出る確率が同じでない、 イカサマなサイコロに対する確率問題です。問題文は以下のとおりです。 2008年東工大 数学 第3問 いびつなサイコロがあり、1から6までのそれぞれの目が出る確率が とは限らないとする。 このサイコロを2回ふったとき同じ目が出る確率をPとし、1回目に奇数、2回目に偶数の目が出る確率をQとする。 (1) P>=1/6であることを示せ。また、等号が成立するための必要十分条件を求めよ。 <解答例> いま、各目の確率をpi (i=1〜6)とする。Σpi=1である(ここにΣはi=1〜6の和を表す(以下同じ)) なお いびつなサイコロなので、必ずしもpi=1/6ではない 偏差σ=Σ(pi-1/6)^2を考える。平方の部分(pi-1/6)^2 を展開すると σ=Σ(pi)^2-Σ2(1/6)pi+6(1/6)^2 (ここで P=Σ(pi)^2 及び Σpi=1 に注意すると) σ=P-1/3+1/6=P-1/6 ≧0 となる(最後の不等式≧の部分は、冒頭の偏差σ=Σ(pi-1/6)^2(平方の和)≧0から従う) よって、P≧1/6で、等号成立はすべてのi=1〜6で pi=1/6の場合のみ(つまり、正規のサイコロの場合) 上記の解答例で i)”各目の確率をpi (i=1〜6)とする”のが、確率変数の考えですよ (確率変数Xで f:X=i → pi という対応が成立している) ii)これをベースに、各piから問の”サイコロを2回ふったとき同じ目が出る確率をP”に落とし込むのが上記解法です iii)『箱の中にサイコロの目を入れた時点である一つの目に固定され、他の目の可能性はゼロ』 という妄想に走ると、2008年東工大の確率の問題は解けなくなります! つづく http://rio2016.5ch.net/test/read.cgi/math/1736907570/10
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.273s*