スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (256レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
4: 132人目の素数さん [] 2025/01/15(水) 11:20:33.09 ID:ZCTGHyhi つづき https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis (Denis質問) I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. (Pruss氏) The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate. (Huynh氏) If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. mathoverflowは時枝類似で ・Denis質問でも、もともと”but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.” Denisの経歴で、彼は欧州の研究所勤務で、other peopleは研究所の確率に詳しいらしい ・Pruss氏とHuynh氏とは、経歴を見ると、数学DRです。両者とも、このパズル(=riddle)は、可測性が保証されていないと回答しています なお ”試しに"Alex Pruss Conglomerability"で検索した結果 Alexander Pruss本人のBlogが見つかった”スレ25 414-415 https://alexanderpruss.blogspot.com/2024/09/independence-conglomerability.html Alexander Pruss's Blog September 11, 2024 Independence conglomerability Conglomerability says that if you have an event E and a partition {Ri : i ∈ I} of the probability space, then if P(E∣Ri) ≥ λ for all i, we likewise have P(E) ≥ λ. Conglomerabilityとは、ある事象Eと確率空間の分割{Ri:i∈I} があるとき、 すべてのi に対してP(E∣Ri) ≥λならば、同様にP(E) ≥λ が成り立つというものである。 Example: I am going to uniformly randomly choose a positive integer (using a countably infinite fair lottery, assuming for the sake of argument such is possible). For each positive integer n, you have a game available to you: the game is one you win if n is no less than the number I am going to pick. You despair: there is no way for you to have any chance to win, because whatever positive integer n you choose, I am infinitely more likely to get a number bigger than n than a number less than or equal to n, so the chance of you winning is zero or infinitesimal regardless which game you pick. つづく http://rio2016.5ch.net/test/read.cgi/math/1736907570/4
199: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/13(金) 17:48:44.09 ID:MdHzpiss >>189 (引用開始) https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E5%A4%89%E6%95%B0 確率変数 確率変数(かくりつへんすう、英: random variable, aleatory variable, stochastic variable)とは、統計学の確率論において、起こりうることがらに割り当てている値(ふつうは実数や整数)を取る変数。 (引用終り) <補足> 1)ここで、”確率変数”という用語が、”統計学”に限らないことは >>164 "1.1 確率変数とは" by 独学・ひまわり数学教室 高校数学 数学B 第3章 確率分布と統計的な推測 https://www.himawari-math.com/note/statistics/statistics1-note/ にある通り そして、大学の確率論では 確率変数は、関数としてとらえるのです( >>193-195 英wikipedia Random variable ご参照) 2)ここが分からないと 大学の確率論では、入り口の ”確率変数”から、ズッコケることになる まあ、大学学部1年の一日目から 詰んだ オチコボレさんには ここは難しいだろうが 皆さんには、他山の石として ちゃんと理解してほしいw ;p) 3)なお、さらに補足すれば 統計学の確率論において 例えば >>179のように 「2枚の硬貨」を使って 箱に {(0、0),(1、0),(0、1),(1、1)} ↓ { X=0 , X=1 , X=1 , X=2 } なる数を入れたとする。その試行を100回繰り返したとする そうすれば、約25回が、X=0で 約50回が、X=1 約25回が、X=2 統計処理の結果、X=0と2が 約25/100=1/4の確率 X=1が 約50/100=1/2の確率 となるのです これで、お分かりのように X=0、1、2 は すべて 過去の試行の結果だから 統計学でも 変化はしない■ (「変数だから 箱の中のコインが くるくる変わっている?」などは、単に勘違い男の妄想にすぎないのです!w ;p) http://rio2016.5ch.net/test/read.cgi/math/1736907570/199
202: 132人目の素数さん [] 2025/06/13(金) 18:17:22.09 ID:WLAhejsz どんなに頭が悪くても、人の話に耳を貸す柔軟性があればやがて理解に達するだろう。 オチコボレは頭が悪い上に人の話に耳を貸さない自閉症なので決して間違いから抜け出せない。 数学以前に病気を治さないとな。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/202
226: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/14(土) 18:51:48.09 ID:036MevG8 >>221 ID:IMrKek3I は、御大か 巡回ありがとうございます 確率論の数学者には、>>1-2の箱入り無数目の手法が 数学として 不成立なのは自明だが 解析学 ないし 関数論の数学者向けに 箱入り無数目の手法から、どんなトンデモな結果になるか? 再度明記しておくと >>78 より Sergiu Hart (2013) >>5 http://www.ma.huji.ac.il/hart/puzzle/choice.pdf で 元ネタとして 引用しているのが http://xorshammer.com/2008/08/23/set-theory-and-weather-prediction/ XOR’s Hammer Written by mkoconnor August 23, 2008 ”Set Theory and Weather Prediction”で ”Then, since all reverse well-founded subsets of R are countable, at most countably many prisoners will be wrong under the Hardin-Taylor strategy. Since all countable subsets of R are measure zero, this gives another way to win the game against Bob with probability one. In fact, it implies that you can do more: You don’t need Bob to tell you (x0, f(x0) | x0 ≠ x}, just (x0, f(x0) | x0 < x}. Hardin and Taylor express this by imagining that we represent the weather with respect to time as an arbitrary function f:R→ R. Then, given that we can observe the past, there is an almost perfect weatherman who can predict the current weather with probability 1. They further show that the weatherman can almost surely get the weather right for some interval into the future.” との記述あり 実関数論に例えると ある区間[a,b]∈R で、可算無限列 a<a0<a1<a2<・・・ <b を取ることができて 実関数値列 f(a0),f(a1),f(a2),・・・ が構成できる この実関数値列で、あるf(ai) i∈N の値が 他の関数値から 確率99/100で的中できることになる 区間[a,b]の可算無限列など、好きなだけ作れるし、区間[a,b]なども数直線上に 好きなだけ取ることが出来る そうすると、解析関数でもない、微分可能関数でもない、単なる連続関数で このような 確率99/100の的中が生じる ならば 実関数論に革命が起きる さらに、箱入り無数目の手法では、箱に 実関数値列 f0,f1,f2,・・・ のみを記した紙を入れて しかし、x=a0,a1,a2・・・ の値は 教えないとする そのような状況下で、あるfi i∈N が、fi以外の値から 確率1-ε で的中できるなどと そんなことを是認できるはずがない (たとえ、関数f が解析函数であったとしても、f(a0),f(a1),f(a2),・・・ として情報が与えられなければ どうしようもない) さらに、箱入り無数目の手法は、複素数にもそのまま拡張できる 複素数の可算列のしっぽ同値類とその代表を考えれば良いだけだから、複素関数論でも 上記実関数と同じになる のみならず、複素数の可算列→(任意)多元数の可算列のしっぽ同値類とその代表に そのまま拡張可能 解析学 ないし 関数論の数学者は 絶対に、この箱入り無数目の手法を認めないだろうw ;p) http://rio2016.5ch.net/test/read.cgi/math/1736907570/226
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.026s