スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (256レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
8: 132人目の素数さん [] 2025/01/15(水) 11:22:49.99 ID:ZCTGHyhi つづき さて、上記を補足します 1)いま、加算無限の箱が、iid 独立同分布 とします 箱を、加算無限個の確立変数の族 X1,X2,・・Xi・・ として扱うのが 現代の確率論の常套手段です 2)いま、サイコロ1〜6の数字を入れるならば、任意Xiの的中確率は1/6 コイントス 0,1の数字を入れるならば、的中確率は1/2 もし、区間[0,1]の実数を入れるならば、的中確率は0 もちろん、時枝記事の通り任意実数r∈Rならば やはり、的中確率は0 です 3)ところが、時枝記事では、確立変数の族 X1,X2,・・Xi・・ を100列に並べ替え 数列のしっぽ同値類の類別と、類別の代表を使って、決定番号を決めて 決定番号の大小比較から、ある箱Xjについて、的中確率99/100に改善できる と主張します 4)「そんなバカな!」というのが、上記の主張です マジ基地は無視してさらに補足します 1)時枝記事の決定番号をdとすると、dは1から無限大(∞)までを渡ります このような場合、しばしば非正則分布(正則でない)を成します(下記) 2)非正則分布の場合、全体が無限大に発散して、平均値も無限大になり 分散や標準偏差σなども、無限大に発散します 3)具体例として、テスト回数無限回の合計点で成績評価をする場合を考えます テスト回数が、1回、2回、・・n回、・・ もし、テスト回数が有限なら 例えば100回で1回の満点100点として、総計10,000(1万)点ですが テスト回数が無限回ならば、毎回1点の人の総計も無限大(∞)に発散し 毎回100点満点の人の総計も無限大に発散しまず 試験の点の合計では、毎回1点の人も毎回100点も区別ができなくなります この合計については、平均は無限大、分散や標準偏差σなども無限大に発散します 4)ところで、時枝氏の数学セミナー201511月号の記事では このような非正則分布を成す決定番号を、あたかも平均値や分散・標準偏差σが有限である 正則分布のように扱い、確率 99/100とします これは、全くのデタラメでゴマカシです (参考) https://ai-trend.jp/basic-study/bayes/improper_prior/ AVILEN Inc. 2020 2020/04/14 非正則事前分布とは?〜完全なる無情報事前分布〜 ライター:古澤嘉啓 目次 1 非正則な分布とは?一様分布との比較 2 非正則分布は確率分布ではない!? 3 非正則事前分布は完全なる無情報事前分布 4 まとめ https://www.math.kyoto-u.ac.jp/~ichiro/index_j.html 重川一郎 https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf 2013年度前期 確率論基礎 P7 確率空間例サイコロ投げの場合 確率空間として次のものを準備すればよい. Ω={1,2,・・・,6}^N∋ω={ω1,ω2,・・・} ωnは1,2,・・・,6のいずれかで,n回目に出た目を表す. 確率はη1,η2,・・・ηnを与えて P(ω1=η1,ω2=η2,・・・ωn=ηn)=(1/6)^n と定めればよい.これが実際にσ-加法的に拡張できることは明らかではないが,Kolmogorovの拡張定理と呼ばれる定理により証明できる. つづく http://rio2016.5ch.net/test/read.cgi/math/1736907570/8
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 248 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.004s