スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (256レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
6: 132人目の素数さん [] 2025/01/15(水) 11:22:05.13 ID:ZCTGHyhi つづき だめなのは、時枝記事だ。まあ、題名はおちゃらけだが、もっとはっきり、数学パズルとした方がよかったろう 非可測で、ヴィタリに言及しているのが、ミスリードだ Hart氏の”A similar result, but now without using the Axiom of Choice.GAME2”のように、選択公理不使用のGAME2があるから、 ソロヴェイの定理(下記 wikipedia ご参照)から、ヴィタリのような非可測は否定される conglomerabilityか、あるいは総和ないし積分が発散する非正規な分布により、可測性が保証されないと考えるべき 時枝氏は、確率変数の無限族の独立性が理解できていないのも痛いね https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 ヴィタリ集合が存在し、それらの存在は選択公理の仮定の下で示される。1970年にロバート・ソロヴェイ(英語版)は、到達不能基数の存在を仮定することにより、全ての実数の集合がルベーグ可測となるような(選択公理を除いた)ツェルメロ・フレンケル集合論のモデルを構築した[2]。 https://ja.wikipedia.org/wiki/%E3%82%BD%E3%83%AD%E3%83%B4%E3%82%A7%E3%82%A4%E3%83%A2%E3%83%87%E3%83%AB ソロヴェイモデル ソロヴェイモデルはロバート M. ソロヴェイ (1970)によって構成されたモデルでツェルメロ=フレンケル集合論 (ZF) の全ての公理が成り立ち、選択公理を除去し、実数の集合が全てルベーグ可測であるようにしたものである。この構成は到達不能基数の存在に依拠している。 これによってソロヴェイはルベーグ不可測集合の存在をZFC (ZF+選択公理) から証明するには、少なくとも到達不能基数の存在がZFCと矛盾しない限り、選択公理が本質的に必要であることを示した。 ステートメント DC は従属選択公理の略記とする。 ソロヴェイの定理は次のことである。 到達不能基数の存在を仮定する。このとき、適切な強制拡大 V[G] の ZF+DC の内部モデルであって、実数のいかなる集合も全て、ルベーグ可測であって perfect set property を満たしベールの性質を満たすというモデルがある。 構成 ソロヴェイはそのモデルを二つのステップによって構成した。まず初めに、到達不能基数 κ を含む ZFC のモデル M から始める。 最初のステップでは M のレヴィ崩壊 M[G] を取る。 略 (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1736907570/6
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 250 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.015s