スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (251レス)
1-

5
(6): 01/15(水)11:20 ID:ZCTGHyhi(5/19) AAS
つづき

But then you have a brilliant idea. If instead of you choosing a specific number, you independently uniformly choose a positive integer n, the probability of you winning will be at least 1/2 by symmetry. Thus a situation with two independent countably infinite fair lotteries and a symmetry constraint that probabilities don’t change when you swap the lotteries with each other violates independence conglomerability.

なお、関連 検索 a countably infinite fair lottery で、下記ヒット ノンスタ使って、うんぬんかんぬん。でも、”1/2 by symmetry”は出てこなかったので ダメみたいですね
外部リンク:philarchive.org
Synthese DOI 10.1007/s11229-010-9836-x
Fair infinite lotteries Sylvia Wenmackers · Leon Horsten
Received: 2 September 2010 / Accepted: 14 October 2010 ©TheAuthor(s) 2010. This article is published with open access at Springerlink.com
Abstract
This article discusses how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. Techniques and ideas from non-standard analysis are brought to bear on the problem.

(参考)
外部リンク:www.ma.huji.ac.il
Sergiu Hart
外部リンク:www.ma.huji.ac.il
Some nice puzzles:
外部リンク[pdf]:www.ma.huji.ac.il
Choice Games November 4, 2013
P2
Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing
the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively.

Sergiu Hart氏は、ちゃんと”シャレ”が分かっている(関西人かもw)
Some nice puzzles Choice Games と、”おちゃらけ”であることを示している
かつ、”P2 Remark.”で当てられないと暗示している
また、”A similar result, but now without using the Axiom of Choice.GAME2”
で、選択公理なしで同じことが成り立つから、”選択公理”は、単なる目くらましってことも暗示している

つづく
1-
あと 246 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.003s