スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (251レス)
1-

4
(5): 01/15(水)11:20 ID:ZCTGHyhi(4/19) AAS
つづき

外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice
asked Dec 9 '13 at 16:16 Denis
(Denis質問)
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
(Pruss氏)
The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate.
(Huynh氏)
If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.

mathoverflowは時枝類似で
・Denis質問でも、もともと”but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”
 Denisの経歴で、彼は欧州の研究所勤務で、other peopleは研究所の確率に詳しいらしい
・Pruss氏とHuynh氏とは、経歴を見ると、数学DRです。両者とも、このパズル(=riddle)は、可測性が保証されていないと回答しています

なお ”試しに"Alex Pruss Conglomerability"で検索した結果 Alexander Pruss本人のBlogが見つかった”スレ25 414-415
外部リンク[html]:alexanderpruss.blogspot.com
Alexander Pruss's Blog September 11, 2024
Independence conglomerability
Conglomerability says that if you have an event E and a partition {Ri : i ∈ I} of the probability space, then if P(E∣Ri) ≥ λ for all i, we likewise have P(E) ≥ λ.
Conglomerabilityとは、ある事象Eと確率空間の分割{Ri:i∈I} があるとき、
すべてのi に対してP(E∣Ri) ≥λならば、同様にP(E) ≥λ が成り立つというものである。
Example: I am going to uniformly randomly choose a positive integer (using a countably infinite fair lottery, assuming for the sake of argument such is possible). For each positive integer n, you have a game available to you: the game is one you win if n is no less than the number I am going to pick. You despair: there is no way for you to have any chance to win, because whatever positive integer n you choose, I am infinitely more likely to get a number bigger than n than a number less than or equal to n, so the chance of you winning is zero or infinitesimal regardless which game you pick.

つづく
1-
あと 247 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.016s