スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (256レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
48: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/02/15(土) 23:17:59.87 ID:XknlDm4+ 転載 ガロア第一論文と乗数イデアル他関連資料スレ13 より https://rio2016.5ch.net/test/read.cgi/math/1738367013/764 ID:rAcOLHcf 補足 ・1列の出題の考察から分かること i)全事象 Ω=多項式環R(x) で、Ωが発散している。つまり、大きすぎる。 だからP(Ω)=1のコルモゴロフの確率公理を満たせない ii)Ωが発散して 大きすぎるので、大数の法則が成り立たない ・だから、箱入り無数目のロジックに穴がないとしても 99/100 が、未開の1列と 開けてしまった99列が平等だと仮定して導けたとしても 本来の確率論の外、つまり 99/100 は、疑似確率 あるいは 確率モドキ なのです <補足> i)全事象 Ωが、大きすぎ Ωが発散しているとき何が起きるか? 簡単なミニモデルとして、Ω=N(自然数)から、数を1つ選んで 大きい数の人が勝ちとする 場に、0,1,2,・・の無限の札が、裏向けに伏せておいた置いてある Aさんが、ある数a=100億 を選んで、Bさんに示したとする Bさんは、勝ったと思う。Nは無限集合で、平均値も無限大だから、100億超えの数は簡単に選べるはず 逆も真で、Bさんが先にb=100億 を提示すれば、Aさんが勝つだろう では、AさんとBさんと、同時に札を開示すればどうか? 確率1/2? ii)もし、札が有限で 0,1,2,・・,100 までとしよう そして、何度も繰り返す。そのとき、大数の法則で どちらが先に開示するか、あるいは同時開示か 大数の法則で 確率1/2に収束するはず だが、Ω=N(自然数)で 0,1,2,・・の無限の札 を使うと 大数の法則とは合わない。大数の法則が成り立たない Ω=多項式環R(x) の場合も、上記同様です 繰り返すが、P(Ω)=1のコルモゴロフの確率公理を満たせない 大数の法則が成り立たない つまり 99/100 は、疑似確率 あるいは 確率モドキ です! http://rio2016.5ch.net/test/read.cgi/math/1736907570/48
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 208 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.004s