スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (251レス)
上下前次1-新
226(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/14(土)18:51 ID:036MevG8(3/3) AAS
>>221
ID:IMrKek3I は、御大か
巡回ありがとうございます
確率論の数学者には、>>1-2の箱入り無数目の手法が
数学として 不成立なのは自明だが
解析学 ないし 関数論の数学者向けに
箱入り無数目の手法から、どんなトンデモな結果になるか?
再度明記しておくと >>78 より
Sergiu Hart (2013) >>5 外部リンク[pdf]:www.ma.huji.ac.il で
元ネタとして 引用しているのが
外部リンク:xorshammer.com
XOR’s Hammer Written by mkoconnor August 23, 2008
”Set Theory and Weather Prediction”で
”Then, since all reverse well-founded subsets of R are countable, at most countably many prisoners will be wrong under the Hardin-Taylor strategy. Since all countable subsets of R are measure zero, this gives another way to win the game against Bob with probability one.
In fact, it implies that you can do more: You don’t need Bob to tell you (x0, f(x0) | x0 ≠ x}, just (x0, f(x0) | x0 < x}. Hardin and Taylor express this by imagining that
we represent the weather with respect to time as an arbitrary function f:R→ R.
Then, given that we can observe the past, there is an almost perfect weatherman who can predict the current weather with probability 1.
They further show that the weatherman can almost surely get the weather right for some interval into the future.”
との記述あり
実関数論に例えると
ある区間[a,b]∈R で、可算無限列 a<a0<a1<a2<・・・ <b を取ることができて
実関数値列 f(a0),f(a1),f(a2),・・・ が構成できる
この実関数値列で、あるf(ai) i∈N の値が 他の関数値から 確率99/100で的中できることになる
区間[a,b]の可算無限列など、好きなだけ作れるし、区間[a,b]なども数直線上に 好きなだけ取ることが出来る
そうすると、解析関数でもない、微分可能関数でもない、単なる連続関数で このような 確率99/100の的中が生じる
ならば 実関数論に革命が起きる
さらに、箱入り無数目の手法では、箱に
実関数値列 f0,f1,f2,・・・ のみを記した紙を入れて
しかし、x=a0,a1,a2・・・ の値は 教えないとする
そのような状況下で、あるfi i∈N が、fi以外の値から 確率1-ε で的中できるなどと そんなことを是認できるはずがない
(たとえ、関数f が解析函数であったとしても、f(a0),f(a1),f(a2),・・・ として情報が与えられなければ どうしようもない)
さらに、箱入り無数目の手法は、複素数にもそのまま拡張できる
複素数の可算列のしっぽ同値類とその代表を考えれば良いだけだから、複素関数論でも 上記実関数と同じになる
のみならず、複素数の可算列→(任意)多元数の可算列のしっぽ同値類とその代表に そのまま拡張可能
解析学 ないし 関数論の数学者は
絶対に、この箱入り無数目の手法を認めないだろうw ;p)
上下前次1-新書関写板覧索設栞歴
あと 25 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.005s