空集合があるなら空写像もあるの? (91レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
87: 10/31(金)15:10 ID:l/bJN8T+(1/2) AAS
一階(※1)の集合論が無矛盾ならば(※2)、xを任意に一つ固定したときに「xは集合である」という文は、証明可能・反証可能・証明も反証も不可能(集合論から独立)の3パターン存在する。
反証可能でないことはxが集合であるための必要条件。
証明可能であることはxが集合であるための十分条件(※3)。
※1 高階の場合、文が証明可能であることと妥当な論理的帰結であることは同値でないのでより多くのパターンがある。
※2 無矛盾性を前提しない場合、証明可能且つ反証可能というパターンもある。
※3 必要十分条件ではない。なぜならその文が集合論から独立ならxが集合でないことは言えないから。
ゲーデルの不完全性定理より集合論が無矛盾なら集合論から独立な文が存在するから、「xは集合である」という文の真偽は常に決定可能ではない。
省1
88: 10/31(金)16:55 ID:l/bJN8T+(2/2) AAS
任意の集合A,B,Cにたいして
A ⊂ B ⇔ A×C ⊂ B×C
は言えるか。(配点3点)。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.225s*