[過去ログ] フェルマーの最終定理の証明 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
812: 大谷 2024/08/11(日)07:36 ID:x1RfCJ2H(1/5) AAS
n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
2^n=(t+1)^n-t^n…(2)の解は有理数となる。
(1)は(2k)^n=[{(t+1)k}^n+u]-{(tk)^n+u}…(3)となる。k=y/2,uは有理数。
u=L^n-{(t+m)k}^n=M^n-(tk)^nと仮定する。(L,Mは整数)
(2k)^n=L^n-M^nの両辺をk^nで割ると、2^n=(L/k)^n-(M/k)^n…(4)となる。
(4)の解は有理数なので、(2)の解と矛盾しない。よって、y^n=L^n-M^nは成り立つ。
省1
813: 大谷 2024/08/11(日)08:07 ID:x1RfCJ2H(2/5) AAS
y^2=(x+1)^2-x^2
y^2=2x+1
y=4
16-1=2x
x=15/2
分母を払うと、
y=8,z=17,x=15
814: 大谷 2024/08/11(日)09:08 ID:x1RfCJ2H(3/5) AAS
y^2=(x+1)^2-x^2
y^2=2x+1
y=6
36-1=2x
x=35/2
分母を払うと、
y=12,z=37,x=35
815: 大谷 2024/08/11(日)15:56 ID:x1RfCJ2H(4/5) AAS
n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
2^n=(t+1)^n-t^n…(2)の解は無理数となる。
(1)は(2k)^n=[{(t+1)k}^n+u]-{(tk)^n+u}…(3)となる。k=y/2,uは無理数。
u=L^n-{(t+m)k}^n=M^n-(tk)^nと仮定する。(L,Mは整数)
(2k)^n=L^n-M^nの両辺をk^nで割ると、2^n=(L/k)^n-(M/k)^n…(4)となる。
(4)の解は有理数なので、(2)の解と矛盾する。よって、y^n=L^n-M^nは成り立たない。
省1
816: 大谷 2024/08/11(日)17:14 ID:x1RfCJ2H(5/5) AAS
n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
2^n=(t+1)^n-t^n…(2)の解は有理数となる。
(1)は(2k)^n=[{(t+1)k}^n+u]-{(tk)^n+u}…(3)となる。k=y/2,uは有理数。
u=L^n-{(t+m)k}^n=M^n-(tk)^nと仮定する。(L,Mは整数)
(2k)^n=L^n-M^nの両辺をk^nで割ると、2^n=(L/k)^n-(M/k)^n…(4)となる。
(4)の解は有理数なので、(2)の解と矛盾しない。よって、y^n=L^n-M^nは成り立つ。
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s