[過去ログ] フェルマーの最終定理の証明 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
818: 大谷 2024/08/12(月)06:48 ID:l1D4Pms9(1/5) AAS
n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
2^n=(t+1)^n-t^n…(2)の解は無理数となる。
(1)は(2k)^n=[{(t+1)k}^n+u]-{(tk)^n+u}…(3)となる。k=y/2,uは無理数。
u=L^n-{(t+m)k}^n=M^n-(tk)^nと仮定する。(L,Mは整数)
(2k)^n=L^n-M^nの両辺をk^nで割ると、2^n=(L/k)^n-(M/k)^n…(4)となる。
(4)の解は有理数なので、(2)の解と矛盾する。よって、y^n=L^n-M^nは成り立たない。
省1
819: 大谷 2024/08/12(月)07:07 ID:l1D4Pms9(2/5) AAS
n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
y^n=2n+1のyに任意の有理数を代入すると、有理数xが得られる。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
820(1): 大谷 2024/08/12(月)07:12 ID:l1D4Pms9(3/5) AAS
n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
y^n=2x+1のyに任意の有理数を代入すると、有理数xが得られる。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
822(1): 大谷 2024/08/12(月)20:02 ID:l1D4Pms9(4/5) AAS
>>821
それほどの、ことでしょうか?当たり前のことです。
823(1): 2024/08/12(月)20:40 ID:l1D4Pms9(5/5) AAS
n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
2^n=(t+1)^n-t^n…(2)の解は無理数となる。
(1)は(2k)^n=[{(t+1)k}^n+u]-{(tk)^n+u}…(3)となる。k=y/2,uは無理数。
u=L^n-{(t+m)k}^n=M^n-(tk)^nと仮定する。(L,Mは整数)
(2k)^n=L^n-M^nの両辺をk^nで割ると、2^n=(L/k)^n-(M/k)^n…(4)となる。
(4)の解は有理数なので、(2)の解と矛盾する。よって、y^n=L^n-M^nは成り立たない。
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s