[過去ログ] フェルマーの最終定理の証明 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
14: 屑スレ殲滅推進委員会 2024/07/01(月)12:09:12.12 ID:bDEcvjaA(9/27) AAS
 M 高校の男女比は男 25%、女 75% である。男子生徒の 12%、女子生徒の 8% は性体験済みである。
 任意に生徒を 1 人選び、「君は性体験済みか?」と聞いたところ、「はい」と答えた。この生徒が女子である確率を求める。ただし男女とも全員が正直に答えるものとする。

::: y'' - y'- 2y = 4x^2を解け。:::
76: 大谷 2024/07/02(火)12:41:45.12 ID:ftPZkK5k(11/22) AAS
n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…?と変形する。y,x,m,tは整数とする。
3^n=(t+1)^n-t^n…?は成り立つ。
?は(3^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}…?となる。k=(y/3)^n,uは実数。
?は?の両辺をk倍して、右辺の前項と後項に同じ数を足した式なので、
成り立つ。よって、?は成り立つ。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
90: 屑スレ殲滅推進委員会 2024/07/03(水)06:44:52.12 ID:oXYiwmt3(1/37) AAS
 M 高校の男女比は男 25%、女 75% である。男子生徒の 12%、女子生徒の 8% は性体験済みである。
 任意に生徒を 1 人選び、「君は性体験済みか?」と聞いたところ、「はい」と答えた。この生徒が女子である確率を求める。ただし男女とも全員が正直に答えるものとする。

::: C(2n,n) ≧ 2^(2n-1)/√n を証明する。:::
106: 屑スレ殲滅推進委員会 2024/07/03(水)07:04:20.12 ID:oXYiwmt3(17/37) AAS
 M 高校の男女比は男 25%、女 75% である。男子生徒の 12%、女子生徒の 8% は性体験済みである。
 任意に生徒を 1 人選び、「君は性体験済みか?」と聞いたところ、「はい」と答えた。この生徒が女子である確率を求める。ただし男女とも全員が正直に答えるものとする。

::: ∫(x^3+1/x^2+2x-3)dxを求める。:::
265: 屑スレ殲滅推進委員会 2024/07/06(土)10:36:26.12 ID:7ehIqz0v(1/18) AAS
 M 高校の男女比は男 25%、女 75% である。男子生徒の 12%、女子生徒の 8% は性体験済みである。
 任意に生徒を 1 人選び、「君は性体験済みか?」と聞いたところ、「はい」と答えた。この生徒が女子である確率を求める。ただし男女とも全員が正直に答えるものとする。

:::
 a,b,c は整数の定数である。等式 (x-a)(x-99) + 2 = (x-b)(x-c) は x に何を代入してもなりたつ。このとき、a,b,c の値の組をすべて求める。
:::
488: 大谷 2024/07/20(土)15:40:52.12 ID:PTU4uEiZ(7/11) AAS
x=b/aとおくと、(y^3-1)/3=(b^2+ab)/a^2となる。(b/aは既約分数とする)
(b/aは既約分数とする)を(b/aは可約分数とする)に置き換えると、
x=b/a=k√3/√3…kは有理数とする。
(y^3-1)/3=(b^2+ab)/a^2={(k√3)^2+√3*k√3}/(√3^2)
={(k^2)*3+k*3}/3=k^2+kとなるので、右辺は有理数となる。
613: 大谷 2024/07/27(土)16:47:32.12 ID:wHvXjgbo(9/10) AAS
n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
(1)は(3^n)k=[{(t+1)^n}k+u]-{(t^n)k+u}となる。k=(y/3)^n,uは無理数。
tは無理数となるので、右辺の括弧の中は無理数となる。よって、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
679: 大谷 2024/08/03(土)18:17:19.12 ID:/iHcGcuJ(5/7) AAS
n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
x^n+y^n=z^nをy^n=(x+m)^n-x^n…(1)と変形する。y,mは整数とする。
2^n=(t+m)^n-t^n…(2)の解は有理数となる。
(1)は(2k)^n=[{(t+1)k}^n+u]-{(tk)^n+u}…(3)となる。k=y/2,uは有理数。
(3)の括弧の中は、整数の2乗数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を無数に持つ。
770: 2024/08/09(金)01:26:25.12 ID:S2f1dzyN(1) AAS
>>131
こうかな(*・〜・*)
24時間テレビ直前!今年の全日本パンフのプロフィールに使って
ほんと下品なやつしかいないな
外部リンク:1yjh.zi3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s