[過去ログ]
✧ ✦ ✧ 複素解析4 ✦ ✧ ✦ (1002レス)
✧ ✦ ✧ 複素解析4 ✦ ✧ ✦ http://rio2016.5ch.net/test/read.cgi/math/1693984172/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
455: 132人目の素数さん [sage] 2024/02/18(日) 12:14:48.55 ID:z5WCrLp6 >>433,435,436,440 https://www.アマゾン.co.jp/gp/customer-reviews/R277BY7HR6FC00/ref=cm_cr_dp_d_rvw_ttl?ie=UTF8&ASIN=476491025X こういうレベルの話で言ってるんだが? http://rio2016.5ch.net/test/read.cgi/math/1693984172/455
456: 132人目の素数さん [sage] 2024/02/18(日) 12:16:28.07 ID:z5WCrLp6 >>455 大学教養程度の知識のみを仮定し「調和積分論」と「変分法」に誘う面白い書 2019年11月12日に日本でレビュー済み 本書は大学教養程度の数学の知識、即ち多変数の微積分と線形代数、のみを仮定して「調和積分論」を論じるという大胆な試みの書である。本書で述べられている調和積分論のHodgeの主定理(Hodge-小平の分解定理)の証明は見事であり(*0)、熱核を用いるAtiyah-Singer理論へと読者を誘ってくれることだろう。 本書を読んで感銘をうけるのは、幾何学研究に適用される「変分法の適用範囲の広汎さ」である。私の知識の範囲においても、すぐに以下の理論を挙げることができる。 (1) 大域変分法への適用: Morse理論、調和写像の理論 (2) Gauge理論への適用: 例えば、Yang-Mills理論 (3) 調和積分論への適用: 例えば、de-Rham・Hodge理論 (本書の主題である) これらのどの一つを取っても、素晴らしく美しい理論である。これらの理論を学べば、幾何学的な対象に適用される変分原理の摩訶不思議な調べに一層魅せられるのではなかろうか。 http://rio2016.5ch.net/test/read.cgi/math/1693984172/456
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s