[過去ログ] 「名誉教授」のスレ (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
969
(1): 2024/11/03(日)13:08 ID:nhTrIgVd(1/2) AAS
>>965
>画像リンク[png]:imonar.com
>この定数変化法ってなんや?未定係数法とは違うん?

"定数変化法:一階の非斉次線型微分方程式は、かなり労力の少ない積分因子や未定係数法を通じて解けるのが普通であるが、それらは推測から来る経験則として利用するもので、しかもすべての非斉次微分方程式に対してうまくいくわけではない。
定数変化法は線型偏微分方程式にも拡張することができて、具体的に熱方程式、波動方程式、振動板方程式などの線型発展方程式の非斉次問題が解ける。この設定での定数変化法を用いた解法は、むしろデュアメルの原理としてよく知られている"

一階の非斉次線型微分方程式→未定係数法 (ラグランジュの未定乗数法)
一階に限らない非斉次線型微分方程式→定数変化法 (積分因子や未定係数法を推測から来る経験則として利用するもの)
でしょうか

(参考)
外部リンク:ja.wikipedia.org
定数変化法
係数変化法(英: variation of parameters)または定数変化法(じょうすうへんかほう、ていすうへんかほう、英: variation of constants)は線型非斉次な常微分方程式の一般解法である。ラグランジュの定数変化法と呼ばれることもある。

一階の非斉次線型微分方程式は、かなり労力の少ない積分因子や未定係数法を通じて解けるのが普通であるが、それらは推測から来る経験則として利用するもので、しかもすべての非斉次微分方程式に対してうまくいくわけではない。

定数変化法は線型偏微分方程式にも拡張することができて、具体的に熱方程式、波動方程式、振動板方程式などの線型発展方程式の非斉次問題が解ける。この設定での定数変化法を用いた解法は、むしろデュアメルの原理としてよく知られている。この呼称は、非斉次熱方程式の解法として定数変化法を初めて適用したジャン=マリー・デュアメルに因むものであり、一般の定数変化法をデュアメルの原理と呼ぶこともある。

外部リンク:ja.wikipedia.org
ラグランジュの未定乗数法
ラグランジュの未定乗数法(英: method of Lagrange multiplier)とは、束縛条件のもとで最適化を行うための数学(解析学)的な方法である。いくつかの変数に対して、いくつかの関数の値を固定するという束縛条件のもとで、別のある1つの関数の極値を求めるという問題を考える。各束縛条件に対して定数(未定乗数、Lagrange multiplier)を用意し、これらを係数とする線形結合を新しい関数(未定乗数も新たな変数とする)として考えることで、束縛問題を普通の極値問題として解くことができる方法である。
外部リンク:en.wikipedia.org
Lagrange multiplier
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables).[1] It is named after the mathematician Joseph-Louis Lagrange.
1-
あと 33 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.008s