[過去ログ]
「名誉教授」のスレ (1002レス)
上
下
前
次
1-
新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
353
: 2024/01/15(月)09:09
ID:JEVrqZGt(4/5)
AA×
[
240
|
320
|480|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
353: [] 2024/01/15(月) 09:09:55.61 ID:JEVrqZGt Originally there were two spaces: W^{{k,p}}(\Omega ) defined as the set of all functions which have weak derivatives of order up to k all of which are in L^{p} and H^{k,p}(\Omega ) defined as the closure of the smooth functions with respect to the corresponding Sobolev norm (obtained by summing over the L^{p} norms of the functions and all derivatives). The theorem establishes the equivalence W^{k,p}(\Omega )=H^{k,p}(\Omega ) of both definitions. It is quite surprising that, in contradistinction to many other density theorems, this result does not require any smoothness of the domain Ω\Omega . According to the standard reference on Sobolev spaces by Adams and Fournier (p 60): "This result, published in 1964 by Meyers and Serrin ended much confusion about the relationship of these spaces that existed in the literature before that time. It is surprising that this elementary result remained undiscovered for so long." http://rio2016.5ch.net/test/read.cgi/math/1693560419/353
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 649 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
ぬこの手
ぬこTOP
0.029s