[過去ログ]
スレタイ 箱入り無数目を語る部屋5 (1002レス)
スレタイ 箱入り無数目を語る部屋5 http://rio2016.5ch.net/test/read.cgi/math/1667737961/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
1: 132人目の素数さん [] 2022/11/06(日) 21:32:41.17 ID:4rX/NHRo 前スレが1000近く又は1000超えになったので、新スレを立てる 前スレ スレタイ 箱入り無数目を語る部屋4 https://rio2016.5ch.net/test/read.cgi/math/1666352731/1 (参考) 時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋 純粋・応用数学(含むガロア理論)8 https://rio2016.5ch.net/test/read.cgi/math/1620904362/401 時枝問題(数学セミナー201511月号の記事) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis (Denis質問) I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. (Pruss氏) The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate. (Huynh氏) If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. つづく http://rio2016.5ch.net/test/read.cgi/math/1667737961/1
2: 132人目の素数さん [] 2022/11/06(日) 21:33:17.96 ID:4rX/NHRo つづき mathoverflowは時枝類似で ・Denis質問でも、もともと”but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.” となっています。Denisの経歴を見ると、彼は欧州の研究所勤務で、other peopleは研究所の確率に詳しい人でしょう ・Pruss氏とHuynh氏とは、経歴を見ると、数学DRです。両者とも、このパズル(=riddle)は、可測性が保証されていないと回答しています http://www.ma.huji.ac.il/hart/ Sergiu Hart http://www.ma.huji.ac.il/hart/#puzzle Some nice puzzles: http://www.ma.huji.ac.il/hart/puzzle/choice.pdf? Choice Games November 4, 2013 P2 Remark. When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively. Sergiu Hart氏は、ちゃんと”シャレ”が分かっている(関西人かもw) Some nice puzzles Choice Games と、”おちゃらけ”であることを示している かつ、”P2 Remark.”で当てられないと暗示している また、”A similar result, but now without using the Axiom of Choice.GAME2” で、選択公理なしで同じことが成り立つから、”選択公理”は、単なる目くらましってことも暗示している つづく http://rio2016.5ch.net/test/read.cgi/math/1667737961/2
4: 132人目の素数さん [] 2022/11/06(日) 21:34:47.89 ID:4rX/NHRo つづき だめなのは、時枝記事だ。まあ、題名はおちゃらけだが、もっとはっきり、数学パズルとした方がよかったろう 非可測で、ヴィタリに言及しているのが、ミスリードだ Hart氏の”A similar result, but now without using the Axiom of Choice.GAME2”のように、選択公理不使用のGAME2があるから、 ソロベイの定理(下記 wikipedia ご参照)から、ヴィタリのような非可測は否定される conglomerabilityか、あるいは総和ないし積分が発散する非正規な分布により、可測性が保証されないと考えるべき 時枝氏は、確率変数の無限族の独立性が理解できていないのも痛いね https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 ヴィタリ集合が存在し、それらの存在は選択公理の仮定の下で示される。1970年にロバート・ソロヴェイ(英語版)は、到達不能基数の存在を仮定することにより、全ての実数の集合がルベーグ可測となるような(選択公理を除いた)ツェルメロ・フレンケル集合論のモデルを構築した[2]。 (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1667737961/4
6: 132人目の素数さん [] 2022/11/06(日) 21:35:27.01 ID:4rX/NHRo つづき 前スレ (完全勝利宣言!w)(^^ https://rio2016.5ch.net/test/read.cgi/math/1666352731/767 (775の修正を追加済み) >>701-702 補足説明 >>760にも書いたが、 ” a)確率上、開けた箱と開けてない箱とは、扱いが違う”>>701 をベースに、時枝記事>>1のトリックを、うまく説明できると思う 1)いま、時枝記事のように>>702 問題の列を100列に並べる 1~100列 のいずれか、k列を選ぶ(1<=k<=100) k以外の列を開け、99列の決定番号の最大値をdmax99 とする k列は未開封なので、確率変数のままだ なので、k列の決定番号をXdkと書く 2)もし、Xdk<=dmax99 となれば、dmax99+1以降の箱を開けて k列の属する同値類を知り、代表列を知り、dmax99番目の箱の数を参照して その値を問題のk列の箱の数とすれば、勝てる (∵決定番号の定義より、dmax99番目の箱は、問題のk列とその代表とで一致しているから) 3)しかし、決定番号は、 自然数N同様に非正則分布>>13だから、これは言えない つまり、確率はP(Xdk<=dmax99)=0 とすべきだ (非正則分布なので、上限なく発散しているので、dmax99<=Xdk となる場合が殆ど) 4)もし、決定番号が、[0,M](Mは有限の正整数)の一様分布ならば dmax99が分かれば、例えば、 0<=dmax99<=M/2 ならば、勝つ確率は1/2以下 M/2<=dmax99<=M ならば、勝つ確率は1/2以上 と推察できて それを繰り返せば、大数の法則>>702で、P(Xdk<=dmax99)=99/100が言えるだろう (注:dmax99は、100列中の99列の最大値なので、P(Xdk<=dmax99)=99/100が正しいだろう) しかし、非正則分布では、このような大数の法則は適用できない 5)人は無意識に、決定番号も正則分布のように錯覚して、トリックに嵌まるのです しかし、非正則分布では、大数の法則も使えない 結局、時枝記事の99/100は、だましのトリックってことです テンプレは以上です http://rio2016.5ch.net/test/read.cgi/math/1667737961/6
17: 132人目の素数さん [] 2022/11/06(日) 22:21:21.52 ID:4rX/NHRo <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/236 >>220 補足 > 決定番号は、多項式環の多項式の次数+1と解せられる>>161 > 時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること > そこが、時枝記事のトリックのキモです <補足> これについては、>>32-35に書いてあるが さらに、掘り下げようと思う そのために、レベル合わせのために下記を、引用する ポイントは 1)多項式環の無限次元線形空間が、ある種ユークリッド空間(有限次元)の無限次元化と考えられること 2)形式的冪級数環は、多項式環を完備化したと考えられること 3)形式的冪級数環はハメル基底(非可算無限)を持ち、一方 多項式環は”完備でない”、”可算なハメル基底を持つもの”になっているってこと ここらが分かると、 「決定番号が非正則分布>>28になっていること」(上記)が分かるだろう (参考) https://ja.wikipedia.org/wiki/%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E7%A9%BA%E9%96%93 ユークリッド空間 直観的な説明 ユークリッド平面を考える一つの方法は、(距離や角度といったような言葉で表される)ある種の関係を満足する点集合[注釈 2]と見なすことである。 ・ユークリッド平面の点は、二次元の座標ベクトルに対応する。 ・平面上の平行移動は、ベクトルの加法に対応する。 ・回転を定義する角度や距離は、内積から導かれる。 といったようなことを考えるのである。こうやってユークリッド平面が記述されてしまえば、これらの概念を勝手な次元へ拡張することは実に簡単である。次元が上がっても大部分の語彙や公式は難しくなったりはしない(ただし、高次元の回転についてはやや注意が必要である。また高次元空間の可視化は、熟達した数学者でさえ難しい)。 つづく http://rio2016.5ch.net/test/read.cgi/math/1667737961/17
18: 132人目の素数さん [] 2022/11/06(日) 22:22:33.05 ID:4rX/NHRo >>17 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/237 >>236 つづき 最後に気を付けるべき点は、ユークリッド空間は技術的にはベクトル空間ではなくて、(ベクトル空間が作用する)アフィン空間と考えなければいけないことである。直観的には、この差異はユークリッド空間には原点の位置を標準的に決めることはできない(平行移動でどこへでも動かせるため)ことをいうものである。大抵の場合においては、この差異を無視してもそれほど問題を生じることはないであろう。 厳密な定義 いったん直交座標系が固定されると、n-次元ユークリッド空間 (S, V) は n-次元の標準的ユークリッド空間 (Rn, Rn) と同一視することができるので、ユークリッド空間といったら標準的ユークリッド空間のことを指す場合も多い。 なお、n-次元ユークリッド空間の定義において、「実内積空間」を「実ベクトル空間」に置き換えて得られる空間を n-次元アフィン空間と呼ぶ。ユークリッド空間は計量(内積)をもった特別なアフィン空間であるということができる。計量をもたないアフィン空間においては、二点間の距離や線分のなす角などは定義されないが、ユークリッド空間においてはこれらの概念を以下に述べる仕方で定義することができる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば Rn とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で En と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。 https://en.wikipedia.org/wiki/Euclidean_space Euclidean space つづく http://rio2016.5ch.net/test/read.cgi/math/1667737961/18
19: 132人目の素数さん [] 2022/11/06(日) 22:23:24.82 ID:4rX/NHRo >>18 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/238 >>>237 つづき https://ja.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95_(%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6) 基底 (線型代数学) 任意のベクトル空間は基底を持つ(このことの証明には選択公理が必要である)。一つのベクトル空間では、全ての基底が同じ濃度(元の個数)を持ち、その濃度をそのベクトル空間の次元と呼ぶ。この事実は次元定理と呼ばれる(証明には、選択公理のきわめて弱い形である超フィルター補題が必要である)。 順序基底と座標系 V は体 F 上の n-次元ベクトル空間であるものとする。V の順序基底を一つ選ぶことは、数ベクトル空間 Fn (座標全体のなすベクトル空間と考えられる)から V への線型同型写像 φ を一つ選ぶことと等価である。これを見るのに Fn の標準基底が順序基底であることが利用できる。 ベクトル v を各成分 aj(v) へ写す各写像は、φ-1 が線型ゆえ、V から F への線型写像になる。即ちこれらは線型汎函数であり、またこれらは V の双対空間の基底を成し、双対基底と呼ばれる。 関連概念 解析学 無限次元の実または複素線型空間に関する文脈では、本項でいう意味での基底を表すのに、しばしばハメル基底(ゲオルク・ハメルに由来[12])や代数基底という用語が用いられる。(ハメル基底は R の Q-基底を意味することもある。)これは、付加的な構造を備えた無限次元線型空間における別の種類の「基底」の概念との区別のためである。そのような基底の概念で極めて重要なものとしては、ヒルベルト空間上の正規直交基底やノルム線型空間上のシャウダー基底およびマルクシェヴィチ基底が挙げられる。 これらの基底概念に共通する特徴は、全体空間を生成するのに基底ベクトルの無限線型結合までを許すことである。これにはもちろん、無限和が意味を持つような空間(位相線型空間)を考えることが必要である。位相線型空間は非常に広範なベクトル空間のクラスであり、例えばヒルベルト空間やバナッハ空間あるいはフレシェ空間といったものを含む。 つづく http://rio2016.5ch.net/test/read.cgi/math/1667737961/19
20: 132人目の素数さん [] 2022/11/06(日) 22:24:27.34 ID:4rX/NHRo >>19 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/239 >>238 つづき 無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。 例 フーリエ級数論において、 略 当該函数系の「無限線型結合」として表される。しかし殆どの自乗可積分函数はこれら基底函数の有限線型結合としては表すことができず、したがってこの「基底」はハメル基底には「ならない」。この空間の任意のハメル基底は、この可算無限にすぎない「基底」よりもはるかに大きいのである(ハメル基底は連続の濃度をもつ[13])。この種の空間のハメル基底は典型的に有用でなく、一方でこれらの空間の正規直交基底はフーリエ解析において本質的である。 https://en.wikipedia.org/wiki/Basis_(linear_algebra)#Hamel_basis Basis (linear algebra) つづく http://rio2016.5ch.net/test/read.cgi/math/1667737961/20
21: 132人目の素数さん [] 2022/11/06(日) 22:25:16.79 ID:4rX/NHRo >>20 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/240 >>239 つづき https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93 ヒルベルト空間 正則関数の空間 ハーディ空間 複素解析や調和解析で用いられるハーディ空間は、その元が複素領域上の正則関数となっているような関数空間の一種である[26]。 ベルグマン空間 正則関数の成すヒルベルト空間の別なクラスにベルグマン空間がある[27]。 ベルグマン空間は再生核ヒルベルト空間(英語版)(関数からなるヒルベルト空間で、先と同様の再生性を持つ積分核 K(ζ,z) を備えたもの)の例になっている。 応用 ヒルベルト空間の応用の多くは、ヒルベルト空間において射影や基底変換といったような単純な幾何学的概念が、ふつうの有限次元の場合に考えられるそれらの自然な一般化になっているという事実に依拠して行われている。 量子力学 ディラック[41]とフォンノイマン[42]によって発展した量子力学の数学的に厳密な定式化は、量子力学系の取りうる状態(より正確には純粋状態)が、状態空間と呼ばれる可分な複素ヒルベルト空間に属する単位ベクトル(状態ベクトルという)によって(位相因子と呼ばれるノルム 1 の複素数の違いを除いて)表現される。つまり、取りうる状態はあるヒルベルト空間の射影化(ふつうは複素射影空間と呼ばれる)の元である。このヒルベルト空間が実際にどのようなものになるかは系に依存する。 https://en.wikipedia.org/wiki/Hilbert_space Hilbert space (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1667737961/21
23: 132人目の素数さん [] 2022/11/06(日) 22:28:39.00 ID:4rX/NHRo <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/32 まとめよう 後の都合で、前スレから都築暢夫先生、梅谷武氏、柳田伸太郎先生をも、再録する 前スレ https://rio2016.5ch.net/test/read.cgi/math/1660377072/459 多項式環 F[x]:任意の自然数より大きい次元の部分空間を持つから無限次元である(都築 暢夫 広島大) http://www.math.sci.hiroshima-u.ac.jp/algebra/member/tsuzuki-j.html 2006年度 代数学1:講義ノート http://www.math.sci.hiroshima-u.ac.jp/algebra/member/files/tsuzuki/04-21.pdf 代数学 I (第2回) 都築 暢夫 広島大 4 月 21 日 P2 例 1.4. 多項式環 F[x]. F 係数多項式全体の集合 F[x] は F 線形空間になる。さらに、 F[x] は可換環 (「代数学 A」で登場する加減乗を持つ代数系で、体の定義で (9) を外し たもの) になる。 P3 例 3.2. 多項式環 F[x]. F[x]n は 1, x, ・ ・ ・ , x^n を基底に持つ n + 1 次元線形空間である。 F 線形空間 F[x] は任意の自然数より大きい次元の部分空間を持つから無限次元である。 証明. 略 (引用終り) <補足説明> 1) ・形式的冪級数環R[[X]]と、多項式環R[X]との関係 R ⊂ R[X] ⊂ R[[X]]で、R[[X]]はR[X]より真に大きい集合である (ここらは、なかなか理解が難しいが。分からない人は専門書に当たって下さい) https://pisan-dub.jp/doc/2011/20110114001/3_2.html 一変数多項式と形式的冪級数 著者:梅谷 武 2021-03-17 R上の形式的冪級数環をR[[X]]、多項式環をR[X]と書きます。このときR ⊂ R[X] ⊂ R[[X]]という包含関係があります。また、{ Xi | i ∈N }はR[X]の基底であり、したがってR[X]はR-自由加群になっています。 つづき http://rio2016.5ch.net/test/read.cgi/math/1667737961/23
25: 132人目の素数さん [] 2022/11/06(日) 22:29:28.14 ID:4rX/NHRo >>23 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/33 つづく 前スレ https://rio2016.5ch.net/test/read.cgi/math/1660377072/601 P164から問題の解答がある。親切だね https://www.math.nagoya-u.ac.jp/~yanagida/index-j.html 柳田伸太郎 名古屋大学 大学院多元数理科学研究科 https://www.math.nagoya-u.ac.jp/~yanagida/2022B1.html 2022年度春学期 現代数学基礎BI https://www.math.nagoya-u.ac.jp/~yanagida/22S/2022BI.pdf 2022年度 現代数学基礎BI 講義ノート 担当: 柳田 伸太郎 ver. 2022.07.27 P36 問題 2.2.9. 例 1.3.7 で扱った多項式空間 K[x], 例 1.3.8 で扱った形式的冪級数の空間 K[[x]], 問題 1.3.4 で 扱った Laurent 多項式の空間 K[x^±1], 問題 1.3.6 で扱った Laurent 級数の空間 K[x^-1, x]], 問題 1.3.7 で扱った形式的 Laurent 級数の空間 K[[x^±1]] を思い出す. (1) 以下の部分空間の列がある事を示せ. K[x] ⊂ K[[x]] ⊂ K[x^-1, x]] ⊂ K[[x^±1]], K[x] ⊂ K[x^±1] ⊂ K[x^-1, x]] ⊂ K[[x^±1]]. (2) K[[x]] ∩ K[x^±1] と K[[x]] + K[x^±1] を求め, それぞれが K[[x^±1]] の部分空間である事を確かめよ. P38 例 2.3.5. 形式的冪級数の空間 K[[x]] (例 1.3.8) から I = N を添字集合とする直積 K^N =Πi∈N K への写像 ψ: K[[x]] -→ K^N, Σi=0~∞ fix^i -→ (fi)i∈N は同型写像 (証明は問題 2.3.2). 例 1.3.3 より K^N は数列空間だから, 形式的冪級数の空間 K[[x]] と数列空間 K^N は同じ線形空間と見なせる事が分かる. P58 多項式空間 K[x] や形式的冪級数の空間 K[[x]] は無限次元. P106 問題 8.1.6. 多項式空間 K[x] の双対空間は形式的冪級数の空間 K[[x]] と同型である事を示せ。 つづき http://rio2016.5ch.net/test/read.cgi/math/1667737961/25
26: 132人目の素数さん [] 2022/11/06(日) 22:30:34.86 ID:4rX/NHRo >>25 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/34 つづく 前スレ https://rio2016.5ch.net/test/read.cgi/math/1660377072/705 もう既に書いたことだが 1)可算無限列 a0,a1,a2,・・an,・・を 形式的冪級数τ=a0+a1x+a2x^2+・・+anx^n+・・に写して考えることができる(>>601 柳田伸太郎 名大 ) 2)しっぽの同値類は、同じ同値類に属する形式的冪級数τ1,τ2で差を作ると f(x)=τ1-τ2 と多項式になる(等しいしっぽの項の部分が消える) 逆に、τ1=τ2+f(x)と書ける。つまり、同じ同値類に属する形式的冪級数は、τ2と多項式f(x) の和に書ける このことから、一つの同値類全体は、あるτ+K[x] と書ける(K[x] は多項式環>>601で、 "τ+K[x]"の+は、記号の濫用) 3)決定番号は、多項式f(x)の次数nのとき、n+1となる (つまり、n+1以降が共通のしっぽ部分になる) 4)形式的冪級数環の空間 K[[x]]>>601と多項式環K[x] との関係は 多項式環K[x]を完備化すると K[[x]]になると考えることができる >>624 >>486-487 (ちょうど、有限小数環を完備化すると、無限小数たる超越数等を含む実数の集合になるのと同じ)>>624>>629 5)多項式環K[x]の中で、コーシー列が形成できて、それが例えば超越関数τに収束する。が、τには到達しない(寸止め状態(皮一枚残り))>>681 それは、可能無限状態で、いくらでも超越関数τに近い多項式が作れるってこと 6)これを、同値類のしっぽの視点で考えると、 いくらでも しっぽを小さくできて、しっぽを無限小にできるということ(本来はこちら)>>681 7)だから、時枝記事のように、 同値類のしっぽが無限大の大きさであることを前提とした確率99/100の議論は、前提が間違っているってこと つまり、”時枝記事の「99/100以上」という勝率”が、根本から間違っているってこと つづき http://rio2016.5ch.net/test/read.cgi/math/1667737961/26
27: 132人目の素数さん [] 2022/11/06(日) 22:31:23.14 ID:4rX/NHRo >>26 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/35 つづく 別の視点では、”時枝記事の「99/100以上」という勝率”が、 非正則分布を使った>>28 条件付き確率と考えることができる>>17 ってことだね 以上 http://rio2016.5ch.net/test/read.cgi/math/1667737961/27
28: 132人目の素数さん [] 2022/11/06(日) 22:32:41.95 ID:4rX/NHRo >>26 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/47 >>34 補足 (>>32-34より) 可算無限列 a0,a1,a2,・・an,・・ ↓↑ 形式的冪級数τ=a0+a1x+a2x^2+・・+anx^n+・・ ↓↑ 多項式 fn(x)=b0+b1x+b2x^2+・・+bnx^n があって しっぽが一致する同値類の二つの形式的冪級数τ、τ’の差 (τ’=a'0+a'1x+a'2x^2+・・+a'nx^n+・・) fn(x)=τ-τ’=(a0-a'0)+(a1-a'1)x+(a2-a'2)x^2+・・+(an-a'n)x^n b0=a0-a'0,b1=a1-a'1,b2=a2-a'2,・・,bn=an-a'n つまり、τ=τ’+fn(x) (補足:しっぽが一致するから、差τ-τ’でしっぽが消える n+1次以降が一致すると、τ-τ’からn次多項式fn(x)が出る 逆、同値類はτ’+fn(x)と書ける。fn(x)は、多項式環の任意の要素とできる ) ↓↑ 多項式空間 K[x] や形式的冪級数の空間 K[[x]] は無限次元 F線形空間 >>32都築暢夫 >>33柳田伸太郎 (なお、n次多項式 fn(x)←→決定番号n+1 の関係があるよ) さて、 3次元ユークリッド空間内で、2次元図形の体積は0 4次元ユークリッド空間内で、3次元図形の超体積は0 ・ ・ n次元ユークリッド空間内で、n-1次元図形の超体積は0 ・ ・ さてさて、 多項式環は無限次元 F線形空間だ そこから、100個のベクトルを選ぶ? 100個の次元が、d1,・・,d100が全部有限次元? というか、ある有限m(m>max(d1,・・,d100))が存在して、 d1,・・,d100たちは、有限m空間内だぁ? だけど、無限次元空間から見て、有限m空間の超体積は0だ! つまり、条件確率で、d1,・・,d100を使って得た99/100は、 超体積は0内の話で、全体としては確率は0ですよ!w http://rio2016.5ch.net/test/read.cgi/math/1667737961/28
31: 132人目の素数さん [] 2022/11/06(日) 22:34:18.87 ID:4rX/NHRo >>28 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/55 >>47 補足 (参考)>>1より 時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋 純粋・応用数学(含むガロア理論)8 https://rio2016.5ch.net/test/read.cgi/math/1620904362/404 さらに、数学セミナー201511月号P37 時枝記事に、次の一文がある 「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 さらに、過去スレでは引用しなかったが、続いて下記も引用する 「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない. しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う. (引用終り) 1)>>47で示したように、可算無限列→形式的冪級数→しっぽの同値類=多項式環 (一つの同値類 形式的冪級数τの同値類=τ+多項式環 K[x] とかける("+"は記号の濫用)) 2)なので、+多項式環 K[x] 自身は、可測も非可測も関係ない (関係ないというより、可測あ非可測かで論じる対象ではない) 3)なので、この部分の時枝氏の”お手つき”とか、何を数学的に主張しているのか? さっぱり、意味不明の陳述を書いているのです。大丈夫かな、この人 4)ポイントは、無限次元空間から100個の有限次元ベクトルを選んで その有限次元ベクトルたちの”次元の大小”の確率計算で、確率99/100を出して、自慢しているw それって、正当な数学になっているの? そこが一番の問題でしょ! http://rio2016.5ch.net/test/read.cgi/math/1667737961/31
32: 132人目の素数さん [] 2022/11/06(日) 22:38:09.46 ID:4rX/NHRo <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/220 >改めて懐疑派・否定派に>>101を問う 1)反例が存在するよ 2)>>104に書いたが、現代数学の確率論では 可算無限個の確率変数族 X1,・・,Xn ,・・ を扱うことができる 3)サイコロの目を箱に入れると、 その確率は ∀i|i∈N P(Xi)=1/6 となる 4)例外は無い! 確率99/100などには決して成りません!w 5)反例が、現代数学の確率論内に存在するので >>101は不成立ですよ 6)実際、下記 服部哲弥 慶応 にあるように ”無限個の独立確率変数を考えるということは無限次元空間上の関数を考えていることになる” ってこと ある箱1つを残して、他の箱を開けても、独立だから、その1つの箱を的中する助けにはならない!! (分からない人は、服部哲弥を百回音読してねw) 7)だから、あとは、時枝の謎解きです 決定番号は、多項式環の多項式の次数+1と解せられる>>161 時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること そこが、時枝記事のトリックのキモです (参考) https://web.econ.keio.ac.jp/staff/hattori/probab.pdf 確率論 服部哲弥 20110909 慶応 P7 発展:「無限次元空間」に値をとる確率変数 この講義では当分の間 Rd 値確率変数(d 次元実確 率変数)とその極限定理(期待値などをとってから d → ∞ としたもの)しか出てこないが,値域と して無限次元 (‘d = ∞’) も非常に重要である. そういう数列の集合上の関数として X をと らえることができると,数列(無限個の実数,即ち無限次元空間)上の確率論(測度論)が展開でき ることになる.このようなことは実現可能であり,今日の確率論の中心的研究分野である.しかも, パラメータ(添字)n は連続変数にすることもできる. P39 無限個の独立確率変数を考えるということは無限次元空間上の関数を考えていることになる.無 限次元空間の上の解析は 20 世紀以降の重要な研究課題なので,無限個の確率変数の解析は重要であ る. http://rio2016.5ch.net/test/read.cgi/math/1667737961/32
34: 132人目の素数さん [] 2022/11/06(日) 22:42:57.54 ID:4rX/NHRo <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/746 >>730 > つまり、代表は100個しか使わない。ヴィタリ集合のように、代表を非可算個使えばともかく > 有限個の代表使用だけでは、ヴィタリ類似の非可測集合を使っているとは言えないということ >一方で、R^N自身にルベーグ測度が入らないという (会田茂樹 2007>>564, 藤田博司>>556) > だから、このままでは、R^N上の関数もルベーグ可測関数にはならないのは明白 >両者(>>603と>>715と)は、数学的主張として別物ですよ 落ちこぼれ、”非可測”も十把一絡げ 細かく見ると、違いが分かるんだよ 1)ヴィタリ集合は、実数R上のルベーグ測度に対して、 選択公理を用いて、R/Qの完全代表系を利用することで、構成される>>512 2)「R^N自身にルベーグ測度が入らない」(会田茂樹 2007, 藤田博司)は、 そもそも「ボレル集合とその測度」>>515 において 測度を”開矩形 (open rectangle)” mes(I) = (b1 - a1) × (b2 - a2) × ・ ・ ・ × (bn - an) で定義することに由来する いま簡単に、Li=bi - ai とおいて、全てのLiがLに等しいとすると mes(I) =L^n と書ける これで n→∞ とすると、mes(I) =L^∞ となる 明らかに、0<L<1なら0に潰れ 1<Lなら∞に発散する ここに、選択公理は関係ない つまり、ヴィタリ集合の非可測とは全く異なるのです 3)関数の可測性は、 関数の可測な像の逆像がまた可測になるというもの>>716 (非可測な関数は、これが保証されない。そうなるとルベーグ積分ができないのです。) (ルベーグ積分ができないと、測度論による確率計算をすることができないことに) 落ちこぼれさんは、 この3つの非可測の区別が 理解できないらしい http://rio2016.5ch.net/test/read.cgi/math/1667737961/34
35: 132人目の素数さん [] 2022/11/06(日) 22:44:48.80 ID:4rX/NHRo >>34 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/730 >>727 >>>715 >>>603で >>>時枝戦略の確率空間に非可測集合は現れない >>ここだけ同意 >と言ったのはあなたでしょ?昨日自分で言ったこともう忘れたの?あなたは白痴ですか? 補足するよ 1)>>603で言ったのは、時枝氏の記事の https://rio2016.5ch.net/test/read.cgi/math/1620904362/404 「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 を否定しているってことね つまり、代表は100個しか使わない。ヴィタリ集合のように、代表を非可算個使えばともかく 有限個の代表使用だけでは、ヴィタリ類似の非可測集合を使っているとは言えないということ 2)一方で、R^N自身にルベーグ測度が入らないという (会田茂樹 2007>>564, 藤田博司>>556) だから、このままでは、R^N上の関数もルベーグ可測関数にはならないのは明白 会田茂樹氏 https://www.jstage.jst.go.jp/article/sugaku/64/3/64_0643278/_pdf/-char/ja では、”無限次元空間では 考えている空間上の仮想的な “一様測度” (“ルベーグ測度”) dφ に収束因子のかかった形式的な表現 dμh- = (1/Zh-) exp-h--1F(φ)dφ (Zh- は規格化定数,F(φ) は考えている空間上の汎関数) を持つ ウエイト付き確率測度 (これは厳密に定義できる) をもとに定式化され” とあるから読んでみたら? ともかく、時枝記事では、ルベーグ測度や(ルベーグ)積分は、そのままでは使えないってことこと それが>>715の主張だよ 3)両者(>>603と>>715と)は、数学的主張として別物ですよ http://rio2016.5ch.net/test/read.cgi/math/1667737961/35
36: 132人目の素数さん [] 2022/11/06(日) 22:46:20.19 ID:4rX/NHRo <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/603 >>560 >時枝戦略の確率空間に非可測集合は現れない ここだけ同意 「非可測集合は現れない」というより 「非可測集合は現れても、結果には影響しない」が正確な表現だろう >>556より http://www.math.sci.ehime-u.ac.jp/~fujita/preprints/lss07_fujita_release.pdf ルベーグ可測性にかんするソロヴェイのモデル 藤田 博司 このP5 従属選択の公理 (Axiom of Dependent Choice, DC),より DC とは, 極大要素を持たない二項関係は無限上昇鎖をもつ, という主張です. あきらかに, 選択公 理 AC は DC を導きます. 逆に DC から AC を導くことができないことは, 定理 1 によって明らかです*6. DC はルベーグ可測でない集合の存在を導くほどには強くないのです. そのいっぽうで, 測度の理論に必要となる, 可算個の集合からの同時選択 (可算選択の公理) は DC によっ て保証されます. また, 第 3 節で展開されるボレル集合のコードの理論には, 可算選択の公理だけでは不十分 で, 本当に DC が必要です. その理由は, DC が整礎的二項関係のとりあつかいを簡単にする点にあります. (引用終り) 1)従属選択公理DCは、可算選択公理を含み、それよりも強い。しかし、非可測集合を作ることはできない(下記) 2)いま、非可算の完全代表系を弱めて、可算無限個の代表系を選んだとしよう そして、時枝の100個の代表が、この可算の代表系に含まれていたとする この場合、時枝で使うのは、100個の代表のみだから、問題なく時枝のトリックは進行する 3)もちろん、選択公理を使って、完全代表系を使っても良いが 重要なのは、これと上記2)とで、全く同じ結果が導かれることだ 4)上記2)の場合は、非可測集合は経由していない 5)つまり、使うのは100個(たかだか有限個)であり 非可測集合を経由しようが、あるいは経由しなくても 両者の結果は、同じ! 6)よって、「非可測集合は現れても、結果には影響しない」 つづく http://rio2016.5ch.net/test/read.cgi/math/1667737961/36
37: 132人目の素数さん [] 2022/11/06(日) 22:47:42.17 ID:4rX/NHRo >>36 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/604 >>603 つづき (参考) https://en.wikipedia.org/wiki/Axiom_of_dependent_choice In mathematics, the axiom of dependent choice, denoted by DC Relation with other axioms Unlike full AC, DC is insufficient to prove (given ZF) that there is a non-measurable set of real numbers The axiom of dependent choice implies the axiom of countable choice and is strictly stronger.[4][5] It is possible to generalize the axiom to produce transfinite sequences. If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice. https://ja.wikipedia.org/wiki/%E5%8F%AF%E7%AE%97%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 可算選択公理 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1667737961/37
38: 132人目の素数さん [] 2022/11/06(日) 22:49:52.87 ID:4rX/NHRo <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/556 >>553 分かってないね こういうのは、問題を対数 log に変換すれば良いんだよ えーと、こうだった >>515-516より 引用開始 http://www.math.sci.ehime-u.ac.jp/~fujita/preprints/lss07_fujita_release.pdf ルベーグ可測性にかんするソロヴェイのモデル 藤田 博司 ここでP2より 1.1 ボレル集合とその測度 まず n 次元ユークリッド空間 R n の部分集合 I で n 個の開区間の直積の形 I = (a1, b1) × (a2, b2) × ・ ・ ・ × (an, bn) になっているものを, 開矩形 (open rectangle) と呼びます. 矩形の測度は mes(I) = (b1 - a1) × (b2 - a2) × ・ ・ ・ × (bn - an) によって定めるのが妥当でしょう. 上記は、有限次のn 次元ユークリッド空間 Rの測度で 矩形の測度を定めている これで、n→∞を考えると 1)もし、全て(bn - an)> 1 ならば、mes(I) →∞に発散する 2)一方、全て(bn - an)< 1 ならば、mes(I) →0に潰れる (引用終り) 1)これで log{mes(I)} = Σ i=1~n log(bi - ai)と書ける n→∞を考えると log{mes(I)} = Σ i=1~∞ log(bi - ai) 2)ここで、あるm, log|(bm - am) から先が、早く減衰すると 総和Σは、発散せずにある値に収束する 3)その値を、sとでもしますかね これで、mes(I)=e^s となる 4)減衰の早さの条件は、 積分∫x=1~∞ 1/x が発散することを参考にして 1/xより早く減衰ってことね(正確に書くのが面倒なので、これでお茶を濁しをしますw) 5)だから、無限次元ユークリッド空間全体を扱わずに こういう扱い易い部分だけを扱うのもありかも これの類似が、ヒルベルト空間で、 Σ(ai)^2 が収束する部分に限定して扱う これで十分関数解析などができるらしい 6)でも、有限次元ユークリッド空間でのルベーグ測度は そのままでは、 無限次元ユークリッド空間全体に拡張しても面白くないってこと (>>523 藤田 博司 ”無限次元のバナッハ空間では・・ルベーグ測度に相当する具合のいい測度も存在しないので・・”ってことだよ)>>526 http://rio2016.5ch.net/test/read.cgi/math/1667737961/38
39: 132人目の素数さん [] 2022/11/06(日) 22:53:08.77 ID:4rX/NHRo <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/564 >>556 補足 > 2)ここで、あるm, log (bm - am) から先が、早く減衰すると > 総和Σは、発散せずにある値に収束する 1)いま、簡単に cm=bm - am と書き直すと log cm から先が、早く0に減衰するということは cm→1 ってことです( log cm→0になる ) 2)つまり、座標で (c1,c2,・・cm,・・)として ここで cm,・・の部分が、 ほとんどが1、またはcm≒1かつlog cm が1/xより早く減衰する必要あり ってことです 3)上記のような部分だけが、 有限次元のユークリッド空間におけるルベーグ測度の拡張がうまく機能する 4)しかし、それ以外では ・例えば、0<cm<1-ε の場合は、ルベーグ測度は0に潰れ ・例えば、1+ε<cm の場合は、ルベーグ測度は∞に発散してしまう (εは、0<ε なる任意の実数) 5)なので、 >>523 藤田 博司 ”無限次元のバナッハ空間では・・ルベーグ測度に相当する具合のいい測度も存在しないので・・”ってことでしょうね (なお、追加 下記 会田茂樹先生の記述も ご参照) (参考) https://www.jstage.jst.go.jp/article/sugaku/64/3/64_0643278/_pdf/-char/ja 数学 2012 Volume 64 Issue 3 P278 無限次元空間上のシュレディンガー作用素の準古典極限 会田茂樹 2007 年度解析学賞受賞者 無限次元空間にはルベーグ測度のような一様測度は存在しないので, 有限次元空間のときと同じようには作用素を定義できない. 無限次元空間では 考えている空間上の仮想的な “一様測度” (“ルベーグ測度”) dφ に収束因子のかかった形式的な表現 dμh- = (1/Zh-) exp-h--1F(φ)dφ (Zh- は規格化定数,F(φ) は考えている空間上の汎関数) を持つ ウエイト付き確率測度 (これは厳密に定義できる) をもとに定式化され,この形式的な表示を用いて漸 近挙動が予測できることになる.これは,あくまで形式的な表示だが,有限次元では,もちろんきちん とした意味を持ち,このウエイト付き測度に関するディリクレ形式の生成作用素のスペクトルギャッ プの h- → 0 での漸近挙動の研究は多くの確率論研究者,解析学者によってなされてきたものである http://rio2016.5ch.net/test/read.cgi/math/1667737961/39
40: 132人目の素数さん [] 2022/11/06(日) 22:59:20.20 ID:4rX/NHRo >>38 <前スレより関連コピー> https://rio2016.5ch.net/test/read.cgi/math/1666352731/523 >>516 補足 >>489 より再録 (参考) http://www.math.sci.ehime-u.ac.jp/~fujita/preprints/lss07_fujita_release.pdf ルベーグ可測性にかんするソロヴェイのモデル 藤田 博司 (愛媛大学 理学部) 2007 年数学基礎論サマースクール 静岡大学にて 2007 年 9 月 4 日~7 日 (引用終り) このP6 より 1.5 ベールの性質 関数解析の基礎にあるバナッハ空間の理論で, Baire のカテゴリー定理が重要な役割を果たすことは, 周知の とおりです. 無限次元のバナッハ空間では, 古典解析で中心的な役割を担っていた有界集合の相対コンパクト 性というユークリッド空間の特質が失われており, ルベーグ測度に相当する具合のいい測度も存在しないので, 両者に代わるツールとして Baire の理論が重要になるのです. Baire のカテゴリー定理の応用に際しては, “あ る第一類集合上の点を除いて” という言い回しが, 測度論での “ほとんどいたるところ” と同様の目的で, しば しば使われます. (引用終り) これ 全然知りませんでしたがw 無限次元になると 有限次のユークリッド空間とは、相当違うことになるみたい(当然ですがw) 特に 「ルベーグ測度に相当する具合のいい測度も存在しない」 にご注目です >>516より >そもそも、無限次元の上記 矩形の測度 をどう定義するかから、始めなければならない >上記のように、n→∞で発散したり、0に潰れる測度のままで良いのかどうか? の吟味から必要になるってことです これと符合するのかもね http://rio2016.5ch.net/test/read.cgi/math/1667737961/40
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
3.057s*