[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
239
(5): 2022/10/29(土)15:49 ID:TJ1yzMer(8/16) AAS
>>238

つづき

無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。


フーリエ級数論において、

当該函数系の「無限線型結合」として表される。しかし殆どの自乗可積分函数はこれら基底函数の有限線型結合としては表すことができず、したがってこの「基底」はハメル基底には「ならない」。この空間の任意のハメル基底は、この可算無限にすぎない「基底」よりもはるかに大きいのである(ハメル基底は連続の濃度をもつ[13])。この種の空間のハメル基底は典型的に有用でなく、一方でこれらの空間の正規直交基底はフーリエ解析において本質的である。
省3
1-
あと 763 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.013s