素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
291: 132人目の素数さん [] 2023/12/29(金) 01:04:26.73 ID:voXPt7J2 ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x) 素数の分だけ分母の項がかけられる yに応じて1を上回る時と1を下回る時がある xが1/2でないと分母の値が無限になるyが存在しない(1を上回る項が趨勢にならない) http://rio2016.5ch.net/test/read.cgi/math/1640355175/291
292: 132人目の素数さん [sage] 2023/12/29(金) 01:34:53.04 ID:voXPt7J2 Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x) =(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう)とおけるため Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x) か無限になるときのxが1/2であることになる http://rio2016.5ch.net/test/read.cgi/math/1640355175/292
295: 132人目の素数さん [sage] 2023/12/29(金) 16:02:27.62 ID:voXPt7J2 Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう) (Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))=lim[n→∞] ((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))*n!)^(1/n)=∞^(1/∞)=1 (Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)) √(1+1/2^2x-2×cos(y×ln2)/2^x)+√(1+1/3^2x-2×cos(y×ln3)/3^x)+√(1+1/5^2x-2×cos(y×ln5)/5^x)+・・・+√(1+1/p(n)^2x-2×cos(y×lnp(n))/p(n)^x)=1 x=1/2でないと√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))のp(k)にk番目の素数を入れてすべての素数分足した際に1に収束しない可能性がある。(1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)の項目が+とーにぶれるため) http://rio2016.5ch.net/test/read.cgi/math/1640355175/295
296: 132人目の素数さん [sage] 2023/12/29(金) 16:10:09.63 ID:voXPt7J2 Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう) (Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))=lim[n→∞] ((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))*n!)^(1/n)=((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))^(1/n)*(n!)^(1/n))=∞←lim[n→∞] (n!)^(1/n)が無限のため (Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)) √(1+1/2^2x-2×cos(y×ln2)/2^x)+√(1+1/3^2x-2×cos(y×ln3)/3^x)+√(1+1/5^2x-2×cos(y×ln5)/5^x)+・・・+√(1+1/p(n)^2x-2×cos(y×lnp(n))/p(n)^x)=∞ x=1/2でないと√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))のp(k)にk番目の素数を入れてすべての素数分足した際に無限に発散しない可能性がある。(収束してしまう可能性がある) (1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)の項目が+とーにぶれるため) http://rio2016.5ch.net/test/read.cgi/math/1640355175/296
297: 132人目の素数さん [sage] 2023/12/29(金) 16:22:02.15 ID:voXPt7J2 y=0のタイミングですべて1を下回るためゼータ関数のζ(x+i*0)=∞になる(1未満のものが無限個かかって分母が0になるため) ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=1/0=∞ 1+1/2^2x-2×cos(y×ln2)/2^x < 1 1+1/3^2x-2×cos(y×ln3)/3^x < 1 逆にすべての項目が1以上になれば0に収束する(実際はそんなyが存在するのがx=1/2のときだけ) (1より大きい項目がたくさん出るタイミングがx=1/2以外では出てこない) ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=1/∞=0 1+1/2^2x-2×cos(y×ln2)/2^x > 1 1+1/3^2x-2×cos(y×ln3)/3^x > 1 1+1/5^2x-2×cos(y×ln5)/5^x > 1 http://rio2016.5ch.net/test/read.cgi/math/1640355175/297
298: 132人目の素数さん [sage] 2023/12/29(金) 21:13:50.10 ID:voXPt7J2 cos(2pi*(1/2+2/3+3/5))=cos(2pi*(7/(2*3*5))) cos(2pi*(1/2+2/3+1/5))=cos(2pi*(11/(2*3*5))) cos(2pi*(1/2+2/3+2/5))=cos(2pi*(13/(2*3*5)))=cos(2pi*((2*3*5-13)/(2*3*5)))=cos(2pi*(17/(2*3*5))) cos(2pi*(1/2+2/3+2/5))=cos(2pi*(17/(2*3*5))) cos(2pi*(1/2+2/3+1/5))=cos(2pi*(19/(2*3*5)))=cos(2pi*((2*3*5*7-19)/(2*3*5)))=cos(2pi*(41/(2*3*5))) cos(2pi*(1/2+2/3+3/5))=cos(2pi*(23/(2*3*5))) cos(2pi*(1/2+2/3+4/5))=cos(2pi*(29/(2*3*5))) cos(2pi*(1/2+2/3+4/5))=cos(2pi*(31/(2*3*5))) cos(2pi*(1/2+2/3+3/5))=cos(2pi*(37/(2*3*5))) cos(2pi*(1/2+2/3+1/5))=cos(2pi*(41/(2*3*5))) cos(2pi*(1/2+2/3+2/5))=cos(2pi*(43/(2*3*5))) cos(2pi*(1/2+2/3+2/5))=cos(2pi*(47/(2*3*5))) cos(2pi*(1/2+2/3+3/5+2/7))=cos(2pi*(11/(2*3*5*7)))=cos(2pi*((2*3*5*7-11)/(2*3*5*7)))=cos(2pi*(199/(2*3*5*7))) ←11*17以上、17^2未満なので素数 cos(2pi*(1/2+2/3+1/5+4/7))=cos(2pi*(13/(2*3*5*7)))=cos(2pi*((2*3*5*7-13)/(2*3*5*7)))=cos(2pi*(197/(2*3*5*7))) ←11*17以上、17^2未満なので素数 cos(2pi*(1/2+2/3+1/5+5/7))=cos(2pi*(17/(2*3*5*7)))=cos(2pi*((2*3*5*7-17)/(2*3*5*7)))=cos(2pi*(193/(2*3*5*7))) ←11*17以上、17^2未満なので素数 cos(2pi*(1/2+2/3+3/5+1/7))=cos(2pi*(19/(2*3*5*7)))=cos(2pi*((2*3*5*7-19)/(2*3*5*7)))=cos(2pi*(191/(2*3*5*7))) ←11*17以上、17^2未満なので素数 cos(2pi*(1/2+2/3+4/5+1/7))=cos(2pi*(23/(2*3*5*7)))=cos(2pi*((2*3*5*7-23)/(2*3*5*7)))=cos(2pi*(187/(2*3*5*7))) ←11*17 cos(2pi*(1/2+2/3+2/5+4/7))=cos(2pi*(29/(2*3*5*7)))=cos(2pi*((2*3*5*7-29)/(2*3*5*7)))=cos(2pi*(181/(2*3*5*7))) ←11^2以上、11^*17未満なので素数 http://rio2016.5ch.net/test/read.cgi/math/1640355175/298
299: 132人目の素数さん [sage] 2023/12/29(金) 21:22:54.77 ID:voXPt7J2 cos(2pi*(1/2+2/3+3/5+2/7))=cos(2pi*(11/(2*3*5*7)))=cos(2pi*((2*3*5*7-11)/(2*3*5*7)))=cos(2pi*(199/(2*3*5*7))) ←13^2以上、17^2未満なので素数 cos(2pi*(1/2+2/3+1/5+4/7))=cos(2pi*(13/(2*3*5*7)))=cos(2pi*((2*3*5*7-13)/(2*3*5*7)))=cos(2pi*(197/(2*3*5*7))) ←13^2以上、17^2未満なので素数 cos(2pi*(1/2+2/3+1/5+5/7))=cos(2pi*(17/(2*3*5*7)))=cos(2pi*((2*3*5*7-17)/(2*3*5*7)))=cos(2pi*(193/(2*3*5*7))) ←13^2以上、17^2未満なので素数 cos(2pi*(1/2+2/3+3/5+1/7))=cos(2pi*(19/(2*3*5*7)))=cos(2pi*((2*3*5*7-19)/(2*3*5*7)))=cos(2pi*(191/(2*3*5*7))) ←13^2以上、17^2未満なので素数 cos(2pi*(1/2+2/3+4/5+1/7))=cos(2pi*(23/(2*3*5*7)))=cos(2pi*((2*3*5*7-23)/(2*3*5*7)))=cos(2pi*(187/(2*3*5*7))) ←11*17 cos(2pi*(1/2+2/3+2/5+4/7))=cos(2pi*(29/(2*3*5*7)))=cos(2pi*((2*3*5*7-29)/(2*3*5*7)))=cos(2pi*(181/(2*3*5*7))) ←13^2以上、11*17未満なので素数 cos(2pi*(1/2+2/3+2/5+2/7))=cos(2pi*(31/(2*3*5*7)))=cos(2pi*((2*3*5*7-31)/(2*3*5*7)))=cos(2pi*(179/(2*3*5*7))) ←13^2以上、11*17未満なので素数 cos(2pi*(1/2+2/3+4/5+6/7))=cos(2pi*(37/(2*3*5*7)))=cos(2pi*((2*3*5*7-37)/(2*3*5*7)))=cos(2pi*(173/(2*3*5*7))) ←13^2以上、11*17未満なので素数 cos(2pi*(1/2+2/3+3/5+3/7))=cos(2pi*(41/(2*3*5*7)))=cos(2pi*((2*3*5*7-41)/(2*3*5*7)))=cos(2pi*(169/(2*3*5*7))) ←13^2 cos(2pi*(1/2+2/3+1/5+3/7))=cos(2pi*(43/(2*3*5*7)))=cos(2pi*((2*3*5*7-43)/(2*3*5*7)))=cos(2pi*(167/(2*3*5*7))) ←11*13以上、13^2未満なので素数 http://rio2016.5ch.net/test/read.cgi/math/1640355175/299
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.375s*