素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
132: 132人目の素数さん [] 2023/04/12(水) 01:10:23.48 ID:qqmT0g6P 1+1/2^s+1/3^s+1/4^s+1/5^s+1/6^s+・・・1/n^s=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 5以上の整数が無限大の時 1+1/2^s+1/3^s+1/4^s+1/∞^s+1/6^s+1/∞^s+1/8^s+1/9^s+1/∞^s・・・1/n^s=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/∞^s-(1-1/2^s)*(1-1/3^s)*(1-1/∞^s)*1/∞^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 1+1/2^s+1/3^s+1/6^s+1/8^s+1/9^s+1/12^s・・・+1/(2^a*3^b)^s=1/(1-1/2^s-(1-1/2^s)*1/3^s) 2と3の因数のみでできたゼータ関数は1/(1-1/2^s-(1-1/2^s)*1/3^s)になる Σ1/(2^a*3^b)=1/(1-1/2-(1-1/2)*1/3) sが1のとき3に収束する 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+1/18+1/24+1/27+1/32+1/36+1/48+1/64+1/72+1/81+1/96+1/108+・・・→1/1/(1-1/2-(1-1/2)*1/3)=3 http://rio2016.5ch.net/test/read.cgi/math/1640355175/132
133: 132人目の素数さん [] 2023/04/12(水) 01:19:26.40 ID:qqmT0g6P 1+1/2^s-1/3^s+1/4^s+1/∞^s-1/6^s+1/∞^s+1/8^s+1/9^s+1/∞^s-1/12^s・・・1/n^s=1/(1-1/2^s+(1-1/2^s)*1/3^s-(1-1/2^s)*(1+1/3^s)*1/∞^s-(1-1/2^s)*(1+1/3^s)*(1-1/∞^s)*1/∞^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 2と-3の因数のみでできたゼータ関数は1/(1-1/2^s+(1-1/2^s)*1/3^s)になる Σ1/(2^a*(-3)^b)=1/(1-1/2+(1-1/2)*1/3)=1.5 aとbは0以上の整数 sが1のとき1.5に収束する 1+1/2-1/3+1/4-1/6+1/8+1/9-1/12+1/18-1/24-1/27+1/32+1/36-1/48+1/64+1/72+1/81-1/96-1/108+・・・→1/1/(1-1/2+(1-1/2)*1/3)=1.5 http://rio2016.5ch.net/test/read.cgi/math/1640355175/133
134: 132人目の素数さん [] 2023/04/12(水) 01:28:31.09 ID:qqmT0g6P 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+1/18+1/24+1/27+1/32+1/36+1/48+1/64+1/72+1/81+1/96+1/108+・・・→1/1/(1-1/2-(1-1/2)*1/3)=3 1+1/2-1/3+1/4-1/6+1/8+1/9-1/12+1/18-1/24-1/27+1/32+1/36-1/48+1/64+1/72+1/81-1/96-1/108+・・・→1/1/(1-1/2+(1-1/2)*1/3)=1.5 Σ1/(2^a*3^2b)=2.25 1+1/2+1/2^2+1/2^3+1/3^2+1/(2*3^2)+1/(2^5)+1/(2^2*3^2)+1/(2^6)+1/(2^3*3^2)+1/(3^4)+・・・→2.25 http://rio2016.5ch.net/test/read.cgi/math/1640355175/134
135: 132人目の素数さん [] 2023/04/12(水) 01:59:41.81 ID:qqmT0g6P 1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 因数が3と7のみのゼータ関数の時 ζ(s)=1/(1-1/3^s-(1-1/3^s)*1/7^s) 1/(1-1/3-(1-1/3)*1/7)=1.75 Σ1/(3^a*7^b)→1.75 1+1/3+1/7+1/3^2+1/(3*7)+1/(3^3)+1/7^2+1/3^4+1/3^5+1/7^3+・・・→1.75 http://rio2016.5ch.net/test/read.cgi/math/1640355175/135
136: 132人目の素数さん [] 2023/04/12(水) 02:05:22.35 ID:qqmT0g6P 1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) Σ(1/(a^n1*b^n2*c^n3)^s=1/(1-1/a^s-(1-1/a^s)*1/b^s-(1-1/a^s)*(1-1/b^s)*1/c^s) http://rio2016.5ch.net/test/read.cgi/math/1640355175/136
139: 132人目の素数さん [] 2023/04/12(水) 15:16:36.39 ID:qqmT0g6P >>138 1/((1-1/2^2)*(1-1/3^2)*(1-1/5^2)*(1-1/7^2)*(1-1/11^2)*(1-1/13^2)*(1-1/17^2))*・・・=π^2/6≒1.64 1/((1-1/2^3)*(1-1/3^3)*(1-1/5^3)*(1-1/7^3)*(1-1/11^3)*(1-1/13^3)*(1-1/17^3))*・・・≒1.21(厳密には不明) Σ1/n^(x+iy)=1+2^(x+iy)+3^(x+i*y)+・・・=1/√{(1+1/2^(2x)-2*cos(yln2)/2^x)*(1+1/3^(2x)-2*cos(yln3)/3^x)*(1+1/5^(2x)-2*cos(yln5)/5^x)*(1+1/7^(2x)-2*cos(yln7)/7^x)*・・・) →0 1/√{(1-(2*cos(yln2)/2^x-1/2^2x))*(1-(2*cos(yln3)/3^x-1/3^2x))*・・・) Σ1/n^(x+i*y)=(1+(2*cos(yln2)/2^x-1/2^2x)+(2*cos(yln2)/2^x-1/2^2x)^2+(2*cos(yln2)/2^x-1/2^2x)^3+・・・)*(1+(2*cos(yln3)/3^x-1/3^2x)+(2*cos(yln3)/3^x-1/3^2x)^2+・・・)*・・・ すべての素数を p(1),p(2),…,p(K) とおきます 第3項目以降無視する Σ1/n^(x+i*y)=1+Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)+・・・≒1+Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)→0 Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)→-1に収束するときx=1/2 Σ2*cos(ylnp(k))/√p(k)-Σ1/p(k)→-1 Σ2*cos(ylnp(k))/√p(k)=Σ1/p(k)-1 http://rio2016.5ch.net/test/read.cgi/math/1640355175/139
140: 132人目の素数さん [] 2023/04/12(水) 18:04:11.75 ID:qqmT0g6P Σ2*cos(ylnp(k))/√p(k)=Σ1/p(k)-1 (Σ2*cos(ylnp(k))/√p(k))^2=(Σ1/p(k))^2-2*Σ1/p(k)+1 (Σ2*cos(ylnp(k))/√p(k))^2=4*Σcos(ylnp(k))^2/p(k)+8*?Πcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b) (Σ1/p(k))^2=Σ1/p(k)^2+2*?Π1/p(a)*p(b)) 4*Σcos(ylnp(k))^2/p(k)+8*?Πcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b))+2*Σ1/p(k)=Σ1/p(k)^2+2*?Π1/p(a)*p(b)+1 Σ1/p(k)^2+2*?Π1/p(a)*p(b)+1は有限の値に収束するため 4*Σcos(ylnp(k))^2/p(k)+8*?Πcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b))+2*Σ1/p(k)からΣ1/p(k)の項を消す必要がある http://rio2016.5ch.net/test/read.cgi/math/1640355175/140
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.021s