素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
419: 2024/01/20(土)01:50 ID:przZ0vAJ(1/5) AAS
ζ(s)=1/(1-2^(s-1))*1/(1-m^(s-1))*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(x-1)*(n)^x),{n, 1, ∞}]
ζ(s)=0のとき
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(x-1)*(n)^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn/m^(1/x)))/(mn/m^(1/x))^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(n))/((n)^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/((mn)^x),{mn, 1, ∞}]=0 ←n=mnも0
n=mn/m^(1/x))^xとおく
省3
420: 2024/01/20(土)01:52 ID:przZ0vAJ(2/5) AAS
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x),{n, 1, ∞}]=0
ζ(s)=1/m*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn)^x,{n, 1, ∞}]=0
以下の2つの式が同時に0になるときがx=1/2のときのみ
ζ(s)=1/m*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)])/(mn)^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn)^x,{n, 1, ∞}]=0
421: 2024/01/20(土)10:52 ID:przZ0vAJ(3/5) AAS
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)-ln(m^(1/x))])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
x=1/2のとき
nを定数、mを変数としてみたとき符号が反転するのみ
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)])/(n/m)^1/2,{n, 1, ∞}]=0
省1
423: 2024/01/20(土)23:45 ID:przZ0vAJ(4/5) AAS
2*3*((1/2+1/3)mod1)=5
2*3*5*((1/2+1/3+2/5)mod1)=7
2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11
2*3*5*7*11*((1/2+2/3+4/5+6/7+2/11)mod1)=13
2*3*5*7*11*13*((1/2+1/3+2/5+4/7+3/11+12/13)mod1)=17
2*3*5*7*11*13*17*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)=19
2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23
省9
424: 2024/01/20(土)23:50 ID:przZ0vAJ(5/5) AAS
(Π[k=1~n)P(k))^1*((Σ(k=1~n)(X_k)/P(k))^1 mod 1)=P(n+1)を満たすとき
(Π[k=1~n)P(k))^a*((Σ(k=1~n)(X_k)/P(k))^a mod 1)=P(n+1)*X
aの値によらず出てくる値はP(n+1)(n+1番目の素数)を素因数にもつ
(2*3*5*7*11*13*17*19*23)^5*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)^5mod1)=29×128516771×24671352289638928778049497411
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.057s