素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
338: 132人目の素数さん [sage] 2024/01/03(水) 00:33:11.16 ID:mP/SslTt (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s)) =1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s))) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・ (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・ 1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46 (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・ 1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.47935388・・・ http://rio2016.5ch.net/test/read.cgi/math/1640355175/338
339: 132人目の素数さん [sage] 2024/01/03(水) 00:42:04.36 ID:mP/SslTt (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s)) =1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s))) =-Li_(s)(-i) - Li_(s)(i) - (2^(1-s) - 1) ζ(s) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・ (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・ 1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46 =-Li_(1/2)(-i) - Li_(1/2)(i) - (2^(1-1/2) - 1) ζ(1/2) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・ 1/(1-1/2^(1/3-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/3)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/3)))=1.47935388・・・ =-Li_(1/3)(-i) - Li_(1/3)(i) - (2^(1-1/3) - 1) ζ(1/3) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/4))=1.487=1/1^(1/4)+1/2^(1/4)+1/3^(1/4)-3/4^(1/4)+1/5^(1/4)+1/6^(1/4)+・・・ 1/(1-1/2^(1/4-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/4))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/4)))=1.487020296・・・ =-Li_(1/4)(-i) - Li_(1/4)(i) - (2^(1-1/4) - 1) ζ(1/4) http://rio2016.5ch.net/test/read.cgi/math/1640355175/339
340: 132人目の素数さん [sage] 2024/01/03(水) 00:46:22.06 ID:mP/SslTt (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s)) =1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s))) =-Li_(s)(-i) - Li_(s)(i) - (2^(1-s) - 1) ζ(s) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・ (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・ 1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46 =-Li_(1/2)(-i) - Li_(1/2)(i) - (2^(1-1/2) - 1) ζ(1/2) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・ 1/(1-1/2^(1/3-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/3)))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/3)))=1.47935388・・・ =-Li_(1/3)(-i) - Li_(1/3)(i) - (2^(1-1/3) - 1) ζ(1/3) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/4))=1.487=1/1^(1/4)+1/2^(1/4)+1/3^(1/4)-3/4^(1/4)+1/5^(1/4)+1/6^(1/4)+・・・ 1/(1-1/2^(1/4-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/4))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/4)))=1.487020296・・・ =-Li_(1/4)(-i) - Li_(1/4)(i) - (2^(1-1/4) - 1) ζ(1/4) http://rio2016.5ch.net/test/read.cgi/math/1640355175/340
341: 132人目の素数さん [sage] 2024/01/03(水) 00:55:45.53 ID:mP/SslTt F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) m=5のとき1,1,1,1,-4のとき (Σ(n=1〜∞)(F(4))*1/n^(s)) =1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^s)) (Σ(n=1〜∞)(F(4))*1/n^(1/2))=1.805=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)+1/4^(1/2)-4/5^(1/2)+1/6^(1/2)+・・・ =1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2)))=1.805097444・・・ (Σ(n=1〜∞)(F(m-1))*1/n^(1/2))=1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(1/2))) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) http://rio2016.5ch.net/test/read.cgi/math/1640355175/341
342: 132人目の素数さん [sage] 2024/01/03(水) 01:01:34.83 ID:mP/SslTt F(2)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・ F(3)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・ F(4)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・ F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) http://rio2016.5ch.net/test/read.cgi/math/1640355175/342
343: 132人目の素数さん [sage] 2024/01/03(水) 01:14:29.37 ID:mP/SslTt (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) =1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s))) 1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2))) =1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(1/2)))-5*(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/(5n)^(1/2))) =(sqrt(5) (sqrt(2) - 1) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/(1 - sqrt(2))≈1.8050974441369647866219120691103300362558013984562195806889193118468626278195508722313989372865636 =(-Li_(1/2)(-(-1)^(1/3)) - Li_(1/2)((-1)^(2/3)) + sqrt(5) (Li_(1/2)(-(-1)^(1/3)) + Li_(1/2)((-1)^(2/3))))/(1 - sqrt(3))≈1.805097444136964786621912069110330036255801398456219580688919311846862627819550872231398937286564 + 0.×10^-96 i http://rio2016.5ch.net/test/read.cgi/math/1640355175/343
344: 132人目の素数さん [sage] 2024/01/03(水) 01:25:56.12 ID:mP/SslTt F(0)=0=0,0,0,0,0,0,0,0,・・・ F(1)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・ F(2)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・ F(3)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・ F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) =1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s))) m=1のとき (Σ(n=1〜∞)(F(0))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-1*(Σ(n=1〜∞)(-1)^(n-1)*1/(1*n)^(s)))=0 =1/(1-1/1^(s-1))*(((Σ(n=1〜∞)F(0)*1/n^(s)))-1*(Σ(n=1〜∞)F(0)*1/(1*n)^(s)))=0 http://rio2016.5ch.net/test/read.cgi/math/1640355175/344
345: 132人目の素数さん [sage] 2024/01/03(水) 23:43:59.78 ID:mP/SslTt a^n+b^n≠c^n (a,b,c,は互いに素) n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる x1=x2=x3にならない(x1=x2=x3=0を除く) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n)) e^(i*2π*(x1/(3*5)^3+x2/(2*5)^3))=e^(i*2π*(x3/(2*3)^3)) x1 = -8, x2 = 7, x3 = 1 x1 = 0, x2 = 0, x3 = 0 x1 = 8, x2 = -7, x3 = -1 e^(i*2π*(8/(3*5)^3-7/(2*5)^3))=e^(i*2π*(-1/(2*3)^3))=e^(-(i π)/108) e^(i*2π*(x1/(5*7)^3+x2/(2*7)^3))=e^(i*2π*(x3/(2*5)^3)) x1 = -8, x2 = 6, x3 = 2 x1 = -4, x2 = 3, x3 = 1 x1 = 0, x2 = 0, x3 = 0 x1 = 4, x2 = -3, x3 = -1 x1 = 8, x2 = -6, x3 = -2 http://rio2016.5ch.net/test/read.cgi/math/1640355175/345
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s