素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
300: 132人目の素数さん [sage] 2023/12/30(土) 11:19:50.17 ID:jsoLHdB8 ζ(s)=Σ1/n^s (1-1/2^(s-1))*ζ(s)=(1-1/2^(s-1))*Σ1/n^s=Σ1/n^s-2*Σ1/(2n)^s=Σ(-1)^(n+1)/n^s ζ(s)=1/(1-1/2^(s-1))*Σ(-1)^n/n^s ζ(1/2)=1/(1-√2)*Σ(-1)^(n+1)/√n=1/(1-√2)*(1-1/√2+1/√3-1/√4+・・・・)≒-1.46 http://rio2016.5ch.net/test/read.cgi/math/1640355175/300
301: 132人目の素数さん [sage] 2023/12/30(土) 11:37:17.40 ID:jsoLHdB8 ζ(s)=1/(1-2^(2/3))*Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3) Σ1/n^(1/3)=1+1/2^(1/3)+1/3^(1/3)-1/4^(1/3)+・・・ 1/2^(1/3)*Σ1/n^(1/3)=1/2^(1/3)+1/4^(1/3)+6^(1/3)+・・・ Σ1/n^(1/3)-2*1/2^(1/3)*Σ1/n^(1/3)=Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3) Σ(-1)^(n+1)/n^(1/3)=(1-2^(2/3))*Σ1/n^(1/3) (1-2^(2/3))*Σ1/n^(1/3)=Σ(n=1〜∞) (-1)^(n+1)/(n^(1/3))≒0.572 ζ(1/3)=0.572/(1-2^(2/3))≒-0.97 ζ(1/3)=1/(1-2^(2/3))*(1-2^(2/3))*Σ1/n^(1/3)≒-0.97 http://rio2016.5ch.net/test/read.cgi/math/1640355175/301
302: 132人目の素数さん [sage] 2023/12/30(土) 12:07:17.28 ID:jsoLHdB8 ζ(1/2+i*y)=Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0 ζ(1/2+i*y)=1/(1-1/2^(-1/2+i*y))*Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0 ←Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0 Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0でもあり、Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0もある 1/1^s+1/2^s+1/3^s+1/4^s+・・・・=0 1/1^s-1/2^s+1/3^s-1/4^s+・・・・=0 1/1^s+1/3^s+1/5^s+1/7^s+・・・・=0 1/2^s+1/4^s+・・・・=0 Σ1/(2n)^(1/2+i*y)=0 Σ1/(2n+1)^(1/2+i*y)=0 http://rio2016.5ch.net/test/read.cgi/math/1640355175/302
303: 132人目の素数さん [sage] 2023/12/30(土) 20:00:06.26 ID:jsoLHdB8 ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2 +1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y) -1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2) +1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4) +1/42 http://rio2016.5ch.net/test/read.cgi/math/1640355175/303
304: 132人目の素数さん [sage] 2023/12/30(土) 20:14:12.74 ID:jsoLHdB8 ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2 +1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0) -1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2) +1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4) +1/42 =-1.436535803101403675249612014725209082488526639894421611110168217≒-1.46=ζ(1/2= -1.464072106873427134267436827982618352404737194303297963507762570 0.0037267799624996494940152894478854603924010305993525428737848287 -9.316949906249123735038223619713650981002576498381357184462... × 10^-6 1.3975424859373685602557335429570476471503864747572035776693... × 10^-7 +1/42 http://rio2016.5ch.net/test/read.cgi/math/1640355175/304
305: 132人目の素数さん [sage] 2023/12/30(土) 20:35:30.01 ID:jsoLHdB8 ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2 +1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y) -1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2) +1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4) +1/R2k ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2 +1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0) -1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2) +1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4) +1/42 =-1.460345326910927484773421538534732892012336163703945420633977740...≒-1.46=ζ(1/2) -1.464072106873427134267436827982618352404737194303297963507762570 0.0037267799624996494940152894478854603924010305993525428737848287 -9.316949906249123735038223619713650981002576498381357184462... × 10^-6 1.3975424859373685602557335429570476471503864747572035776693... × 10^-7 http://rio2016.5ch.net/test/read.cgi/math/1640355175/305
306: 132人目の素数さん [sage] 2023/12/30(土) 20:36:01.86 ID:jsoLHdB8 ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2 +1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y) -1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2) +1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4) +1/R2k ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2 +1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0) -1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2) +1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4) =-1.460345326910927484773421538534732892012336163703945420633977740...≒-1.46=ζ(1/2) http://rio2016.5ch.net/test/read.cgi/math/1640355175/306
307: 132人目の素数さん [sage] 2023/12/30(土) 21:16:29.25 ID:jsoLHdB8 ζ(x+i*y')-ζ(x+i*y)=1-1+1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y) +5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2 ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)) +5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2 ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1+(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2 1/4^(x/2+i*y'/2)-1/4^(x/2+i*y/2)=1/2^(x+i*y')-1/2^(x+i*y)=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2)) 1/2^(x/2+i*y/2+i*π/2)=-1/2^(x/2+i*y/2) (1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))*(1+(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)))) (1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/4+i*y'/4)+1/2^(x/4+i*y/4+i*π/4)) 1/2^(x/4+i*y/4+i*π/4+i*π/2)=-1/2^(x/4+i*y/4+i*π/4) (1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4+i*π/2)) =(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/8+i*y'/8)-1/2^(x/8+i*y/8+i*π/8+i*π/8))**(1/2^(x/8+i*y'/8)+1/2^(x/8+i*y/8+i*π/8+i*π/8)) 無限に分解していく際にx=1/2でないと都合が悪い可能性がある(1/2^nで実部を表せない) http://rio2016.5ch.net/test/read.cgi/math/1640355175/307
308: 132人目の素数さん [sage] 2023/12/30(土) 22:03:36.06 ID:jsoLHdB8 1/2^(x+i*y+i*π/ln2)=1/2^(x+i*y)*1/e^(i*π)=-1/2^(x+i*y) ゼータ関数をζ(x+i*y)≒1+1/2^(x+i*y)と簡略化する ζ(x+i*y’)とζ(x+i*y)を考えて差がほぼ0になる点を探す ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x+i*y')-1/2^(x+i*y))=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2)) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2-i*π/ln2^2+i*π/ln2)) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3*+i*π/ln2^3+i*π/ln2^2+i*π/ln2)) lim[n→∞] (1/2^(x/2^n+i*y'/2^n)-1/2^(x/2^n+i*y/2^n+i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2))≒0 lim[n→∞]Σ[k=1→n]i*π/ln2^k=i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2=i*π*∞ mod 2π nの値が無限でないときlim[n→m]Σ[k=1→n]i*π/ln2^kのときΣ[k=1→n]i*π/ln2^kはmod 2πされるため0から2πの値をとる A=2^’x/2^m)*e^(i*y') B=2^(x/2^m)*e^(i*y+lim[n→m]Σ[k=1→n]i*π/ln2^k) AとBの角度差がlim[n→m]Σ[k=1→n]i*π/ln2^kと可変する 長さが半分になり続ける2本のベクトルの間のベクトルの積とみなせるため 初期値が1/2でないと0に収束しない可能性がある (1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4*+i*π/ln2^4+i*π/ln2^3+i*π/ln2^2)) *(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4*+i*π/ln2^4+i*π/ln2^3+i*π/ln2^2+i*π/ln2)) http://rio2016.5ch.net/test/read.cgi/math/1640355175/308
309: 132人目の素数さん [sage] 2023/12/30(土) 22:26:56.47 ID:jsoLHdB8 ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2)) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+iπ/ln2) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2+iπ/ln2) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2) *(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2+iπ/ln2) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2) *(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2) *(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2+iπ/ln2) 2ベクトルの角度差がy'-y+lim[n→m]Σ[k=a→n]i*π/ln2^k)と可変する 長さは1/2^(x/2^m)になる 初期値が1/2でないと0に収束しない可能性がある http://rio2016.5ch.net/test/read.cgi/math/1640355175/309
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.019s