素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
386: 132人目の素数さん [sage] 2024/01/12(金) 20:50:34.97 ID:Uq67vDTi 1/(1-1/2^(s-1))*1/(1-1/m^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m*(floor[cos(n*2pi/m)^2]))/n^(s))=ζ(s) 1/(1-1/2^-1/2)*1/(1-1/5^-1/2)*(Σ(n=1~∞)(-1)^(n-1)(1-5*(floor[cos(n*2pi/5)^2]))/n^(1/2))=-1.46=ζ(1/2) http://rio2016.5ch.net/test/read.cgi/math/1640355175/386
387: 132人目の素数さん [sage] 2024/01/12(金) 21:17:34.78 ID:Uq67vDTi 1/(1-1/2^(s-1))*1/(1-1/m^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m*(floor[cos(n*2pi/m)^2]))/n^(s))=ζ(s)=0 (Σ(n=1~∞)(-1)^(n-1)(floor[cos(n*2pi/m)^2])/n^(s))=0 1/(m)^s-1/(2m)^s+1/(3m)^s-1/(4m)^s+・・・・=0 floor[cos(n*2pi/m)^2]=floor[1/2 (1+cos((4 n π)/m))] 1/(1-1/2^(zetazero[1]-1))*1/(1-1/15^(zetazero[1]-1))*(Σ(n=1~∞)(-1)^(n-1)(1-15*(floor[1/2 (1+cos((4 n π)/15))]))/n^(zetazero[1]))=0 http://rio2016.5ch.net/test/read.cgi/math/1640355175/387
388: 132人目の素数さん [sage] 2024/01/12(金) 21:43:23.98 ID:Uq67vDTi 1/(1-1/2^(s-1))*1/(1-1/m1^(s-1))*1/(1-1/m2^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m1*(floor[cos(n*2pi/m1)^2]))(1-m2*(floor[cos(n*2pi/m2)^2]))/n^(s))=ζ(s) m1以降に3以上の素数を入れていく 1/(1-1/2^(s-1))*1/(1-1/3^(s-1)*1/(1-1/5^(s-1))*・・・*(Σ(n=1~∞)(-1)^(n-1)(1-m1*(floor[cos(n*2pi/3)^2]))(1-m2*(floor[cos(n*2pi/5)^2]))*・・・)/n^(s))=ζ(s) Π*1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s) http://rio2016.5ch.net/test/read.cgi/math/1640355175/388
389: 132人目の素数さん [sage] 2024/01/12(金) 21:49:55.32 ID:Uq67vDTi Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s) Π1/(1-1/prime[k]^(s))=ζ(s) Re(s)>1のとき収束 Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)=Π1/(1-1/prime[k]^(s)) (Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=Π1/(1-1/prime[k]^(s))/Π1/(1-1/prime[k]^(s-1))になるときs=1/2+iyになる s=1/2+iyのとき (Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(1/2+iy))=Π1/(1-1/prime[k]^(1/2+iy))Π1/(1-1/prime[k]^(-1/2+iy)) http://rio2016.5ch.net/test/read.cgi/math/1640355175/389
390: 132人目の素数さん [sage] 2024/01/12(金) 22:04:53.90 ID:Uq67vDTi (Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=0のとき Π1/(1-1/prime[k]^(s))/Π1/(1-1/prime[k]^(s-1))の中に (1-1/a^(x+iy))/(1-1/a^(x-1+iy))=0になる素数aが存在する y=(2nπ-i*ln(a^-x))/ln(a)=2nπ/ln(a)+ix ←非自明なゼロ点のy座標 http://rio2016.5ch.net/test/read.cgi/math/1640355175/390
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.019s