素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
476: 2024/02/03(土)13:28 ID:RnpFDdRt(1/11) AAS
2*3*5*7*(11^60*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(13^60*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(17^60*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(19^120*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(23^720*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
477: 2024/02/03(土)20:39 ID:RnpFDdRt(2/11) AAS
2*3*5*7*(11^(2^2*3*5)*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(13^(2^2*3*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(17^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(19^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(23^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*(29^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
478: 2024/02/03(土)20:47 ID:RnpFDdRt(3/11) AAS
2*3*5*7*(11^(2*3)*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(13^(2^2*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(17^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(19^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(23^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*(29^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
479: 2024/02/03(土)20:57 ID:RnpFDdRt(4/11) AAS
2*3*5*7*(13^(2*3)*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(19^(2^2*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(101^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(997^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(2011^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*(13099^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1

Π[k=1~n]p[k]=1からn番目の素数積
省4
480: 2024/02/03(土)21:07 ID:RnpFDdRt(5/11) AAS
p[a]^m mod Π[k=1~n]p[k] =1

((p[a]-p[n+1])+p[n+1])^m mod Π[k=1~n]p[k] =1

(((p[a]-p[n+1])+p[n+1])^m-p[n+1]^m) mod Π[k=1~n]p[k] =0

((p[a]^m-p[n+1]^m) mod Π[k=1~n]p[k] =0

p[n+1]^m mod Π[k=1~n]p[k] =1を満たすmがあるとき
n+1番目以上の素数のm乗からn+1番目の素数のm乗を引いた数は1からn番目の素数積で割り切れる。
481: 2024/02/03(土)21:12 ID:RnpFDdRt(6/11) AAS
(9817^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
(104717^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
(1299709^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
482: 2024/02/03(土)21:16 ID:RnpFDdRt(7/11) AAS
p[n+1]^m mod Π[k=1~n]p[k] =1を満たすmがあるとき
n+1番目以上の素数[a]のm乗からn+1番目以上の素数[b]のm乗を引いた数は1からn番目の素数積で割り切れる。
p[a]>>>>p[b]

(1299709^(2^4×3^2×5×11)-37^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
(82562383^(2^4×3^2×5×11)-7919^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
483: 2024/02/03(土)21:27 ID:RnpFDdRt(8/11) AAS
(prime[4759323]^(2^4×3^2×5)-(37*101*prime[562]*1721)^(2^4×3^2×5) ) mod (2*3*5*7*11*13*17*19)=0
合成数の差も1からn番目の素数積を素因数にもつ
484: 2024/02/03(土)21:34 ID:RnpFDdRt(9/11) AAS
(prime[4759323]^(2^4×3^2×5×A)-(37*101*prime[562]*1721)^(2^4×3^2×5×A) ) mod (2*3*5*7*11*13*17*19)=0
Aに任意の整数を入れても満たすため
n+1番目以上の素数または合成数のX乗からn+1番目以上の素数または合成数のX乗を引いたものは1からn番目の素数を素因数にもち
X乗の値を十分大きくすることで指数部の探索の手間を減らせる
485: 2024/02/03(土)23:13 ID:RnpFDdRt(10/11) AAS
prime[a]=a番目の素数、prime[b]=b番目の素数
a>>bのとき
(prime[a]^(2^2*3)-(prime[b])^(2^2*3) ) mod (2*3*5*7)=0
(prime[a]^(2^2*5)-(peime[b])^(2^2*5) ) mod (2*3*5*7*11)=0
はすべてのa,bで満たす

(prime[a]^4)^3=X* (2*3*5*7)+((prime[b])^4)^3 ←X=A^3*(2*3*5*7)^2のとき
(prime[a]^4)^3=(A*(2*3*5*7))^3* (2*3*5*7)+((prime[b])^4)^3を満たすAが存在しないため
省4
486: 2024/02/03(土)23:31 ID:RnpFDdRt(11/11) AAS
prime[a]=a番目の素数、prime[b]=b番目の素数
a≠bのとき a,b=mod 以降の素因数を含まないとき
(prime[a]^(2^2*3)-(prime[b])^(2^2*3) ) mod (2*3*5*7)=0
(prime[a]^(2^2*3*5)-(prime[b])^(2^2*3*5) ) mod (2*3*5*7*11)=0
(prime[a]^(2^2*3*5)-(prime[b])^(2^2*3*5) ) mod (2*3*5*7*11*13)=0
(prime[a]^(2^4*3^2*5)-(prime[b])^(2^4*3^2*5) ) mod (2*3*5*7*11*13*17)=0
(prime[a]^(2^4*3^2*5)-(prime[b])^(2^4*3^2*5) ) mod (2*3*5*7*11*13*17*19)=0
省2
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.022s