素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
249: 132人目の素数さん [sage] 2023/12/24(日) 00:00:32.82 ID:JbDEdDB5 e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*1/(1/13+1/11))*(1/11+1/13))))=e^((41 i π)/15015) e^(i*2pi*(1/2+1/3+1/5-(floor((1/2+1/3+1/5)*1/(1/7+1/11))*(1/7+1/11))))=e^((227 i π)/1155) e^(i*2pi*(1/2+1/3+1/5-(floor((1/2+1/3+1/5)*1/(1/7-1/11))*(1/7-1/11))))=e^((107 i π)/1155) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*1/(1/17-1/19))*(1/17-1/19))))=e^((3583 i π)/4849845) http://rio2016.5ch.net/test/read.cgi/math/1640355175/249
250: 132人目の素数さん [sage] 2023/12/24(日) 01:14:40.11 ID:JbDEdDB5 e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^18)/13^18))=e^((113 i π)/129885995029510789063995) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^38)/13^38))=e^((113 i π)/2468478630400200118633482921158271484075069995) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^58)/13^58))=e^((113 i π)/46913346949823172969328602662591113055268146803561884190150793875995) http://rio2016.5ch.net/test/read.cgi/math/1640355175/250
251: 132人目の素数さん [sage] 2023/12/24(日) 01:22:47.91 ID:JbDEdDB5 e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^37)/17^37))=e^((907 i π)/50481869235825218325371365653453436636492074365655) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^38)/17^38))=e^((907 i π)/50481869235825218325371365653453436636492074365655) http://rio2016.5ch.net/test/read.cgi/math/1640355175/251
252: 132人目の素数さん [sage] 2023/12/24(日) 13:38:02.71 ID:JbDEdDB5 e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^14)/7^14))=e^((19 i π)/10173346092735) e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^15)/7^15))=e^((13 i π)/71213422649145) e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^16)/7^16))=e^((i π)/498493958544015) e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^17)/7^17))=e^((i π)/498493958544015) P(n)=n番目の素数 Σ1/P(m)=1からn番目までの素数の逆数和 F(k)=e^(i*2pi*(Σ1/P(m)-floor((Σ1/P(m))*P(n+1)^k)/P(n+1)^k)) F(k)=F(k+1)となるときのkをいれたF(k)の分子は素数になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/252
253: 132人目の素数さん [sage] 2023/12/24(日) 13:42:02.27 ID:JbDEdDB5 F(k)=F(k+1)となるとき floor((Σ1/P(m))*P(n+1)^k)/P(n+1)^k=floor((Σ1/P(m))*P(n+1)^(k+1))/P(n+1)^(k+1) floor((Σ1/P(m))*P(n+1)^(k+1))=P(n+1)*floor((Σ1/P(m))*P(n+1)^k)←P(n+1)をfloor関数からくくりだせるためΣ1/P(m))*P(n+1)^kの小数点以下にP(k)をかけたものが1を上回らないことになる floor((Σ1/P(m))*P(n+1)^k)が最小値である期待値が高い http://rio2016.5ch.net/test/read.cgi/math/1640355175/253
254: 132人目の素数さん [sage] 2023/12/24(日) 13:51:06.89 ID:JbDEdDB5 e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^37)/17^37))=e^((6737 i π)/50481869235825218325371365653453436636492074365655) e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^38)/17^38))=e^((24439 i π)/858191777009028711531313216108708422820365264216135) e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^41)/17^41))=e^((8867 i π)/4216296200445358059753341830742084481316454543093871255 e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^a)/17^a))←aが大きくなるほど分子に素数が出やすくなる http://rio2016.5ch.net/test/read.cgi/math/1640355175/254
255: 132人目の素数さん [sage] 2023/12/24(日) 14:02:19.38 ID:JbDEdDB5 e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(47+60n))/17^(47+60n)))=cos((20333 π)/6832189821217747175293972892253321626679167382039731441189354968334912280777158953667012897071399383555565045105965234666093120407935095) + sin((20333 π)/6832189821217747175293972892253321626679167382039731441189354968334912280777158953667012897071399383555565045105965234666093120407935095) i e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(47+60n))/17^(47+60n)))の分子は20333で一定 e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(77+60n))/17^(77+60n)))の分子は14327で一定 周期性がある分子は素数である可能性が高い http://rio2016.5ch.net/test/read.cgi/math/1640355175/255
256: 132人目の素数さん [sage] 2023/12/24(日) 14:05:15.96 ID:JbDEdDB5 e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(37+60n))/17^(37+60n)))=e^((6737 i π)/50481869235825218325371365653453436636492074365655) e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(37+60n))/17^(37+60n)))の分子は6737で一定 http://rio2016.5ch.net/test/read.cgi/math/1640355175/256
257: 132人目の素数さん [sage] 2023/12/24(日) 14:14:00.06 ID:JbDEdDB5 P(n)=n番目の素数 Σ1/P(m)=1からn番目までの素数の逆数和 F(a,b,c)=e^(i*2pi*(Σ1/P(m)-floor((Σ1/P(m))*P(n+1)^(a+b*c))/P(n+1)^(a+b*c))) F(a,b,c)=F(a,b,c+l(l=1以上の整数))となるときのa,b,cをいれたF(a,b,c)の分子は素数になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/257
258: 132人目の素数さん [sage] 2023/12/24(日) 14:21:39.91 ID:JbDEdDB5 F(a,b,c)=e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13+1/17-floor((1/2-1/3+1/5-1/7+1/11-1/13+1/17)*19^(851+840n))/19^(851+840n)))=cos((454253 /・・・ ←周期性を持つので(a=851,b=840、c=1以上の整数)454253は素数 http://rio2016.5ch.net/test/read.cgi/math/1640355175/258
259: 132人目の素数さん [sage] 2023/12/24(日) 19:44:48.47 ID:JbDEdDB5 e^(i*2pi*(1/2-floor((1/2)*3)/3-floor((1/2-floor((1/2)*3)/3)*5)/5-floor((1/2-floor((1/2)*3)/3-floor((1/2-floor((1/2)*3)/3)*5)/5)*7^a)/7^a))=e^((5 i π)/105) ←aによらず分子=5で一定 http://rio2016.5ch.net/test/read.cgi/math/1640355175/259
260: 132人目の素数さん [sage] 2023/12/24(日) 23:36:16.40 ID:JbDEdDB5 下の条件の時cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n)) =cos(2pi*(X/(2*3*5*7)^n))のXは必ず素数 a≠2n、b≠3n、c≠5n、d≠7n 1>cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n)) >cos(2pi*(11^2/(2*3*5*7)^n)) cos(2pi*(11^2/(2*3*5*7)^n))>cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n))>cos(2pi*(11*13/(2*3*5*7)^n)) nが大きくなると満たさなければいけない範囲が狭まるものの、nが小さくなるととれる値の数が減るため範囲内に入る期待値が小さくなる(素数の個数をいくら増やしても同じ) http://rio2016.5ch.net/test/read.cgi/math/1640355175/260
261: 132人目の素数さん [sage] 2023/12/24(日) 23:49:32.46 ID:JbDEdDB5 cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n))=cos(2pi*(X/(2*3*5*7)^n) Xに出てくる数の個数は全体で(2*3*5*7)^n個 (2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)個の2,3,5,7を素因数に持たない数ができる(11以上の素因数の積になる可能性が出てしまう) (2*3*5*7)^n-(2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)個は必ず2,3,4,5の最低どれか1つを素因数に持つ数になる 2,3,5,7を素因数に持たない数が円周上に均等に分布していると仮定するとき範囲内にある数は 約(2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)*(2*11^2)/(2*3*5*7)^n個とみなせる http://rio2016.5ch.net/test/read.cgi/math/1640355175/261
262: 132人目の素数さん [sage] 2023/12/24(日) 23:51:15.55 ID:JbDEdDB5 (2^2-2)*(3^2-3)*(5^2-5)*(7^2-7)*(2*11^2)/(2*3*5*7)^2≒55個 55個の素数を表現できる可能性がある http://rio2016.5ch.net/test/read.cgi/math/1640355175/262
263: 132人目の素数さん [sage] 2023/12/24(日) 23:52:24.94 ID:JbDEdDB5 cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n))=cos(2pi*(X/(2*3*5*7)^n) Xに出てくる数の個数は全体で(2*3*5*7)^n個 (2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))個の2,3,5,7を素因数に持たない数ができる(11以上の素因数の積になる可能性が出てしまう) (2*3*5*7)^n-(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))個は必ず2,3,4,5の最低どれか1つを素因数に持つ数になる 2,3,5,7を素因数に持たない数が円周上に均等に分布していると仮定するとき範囲内にある数は 約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*(2*11^2)/(2*3*5*7)^n個とみなせる http://rio2016.5ch.net/test/read.cgi/math/1640355175/263
264: 132人目の素数さん [sage] 2023/12/24(日) 23:54:35.61 ID:JbDEdDB5 表現できる素数は一定のはずなのでnの値によらず 約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*(2*11^2)/(2*3*5*7)^n個は一定になる (2^2-2)*(3^2-3)*(5^2-5)*(7^2-7)*(2*11^2)/(2*3*5*7)^2≒55個 (2^3-2^2)*(3^3-3^2)*(5^3-5^2)*(7^3-7^2)*(2*11^2)/(2*3*5*7)^3≒55個 (2^4-2^3)*(3^4-3^3)*(5^4-5^3)*(7^4-7^3)*(2*11^2)/(2*3*5*7)^4≒55個 http://rio2016.5ch.net/test/read.cgi/math/1640355175/264
265: 132人目の素数さん [sage] 2023/12/24(日) 23:58:07.44 ID:JbDEdDB5 P(k)はk番目の素数 1<=k<=mの時 2*P(m+1)^2*1/Π(P(k)^n*Π(P(k)^n-P(k)^(n-1))はnの値によらず一定 http://rio2016.5ch.net/test/read.cgi/math/1640355175/265
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.026s