素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
346: 132人目の素数さん [sage] 2024/01/04(木) 00:06:08.79 ID:HQkE/6B8 e^(i*2π*(a/(2)^3+b/(3)^3+c/(5)^3))=e^(i*2π*(x3/(2*3*5)^3)) 1>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7^2/(2*3*5)^3))のとき cos(2π*(7^2/(2*3*5)^3))>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7*11/(2*3*5)^3)) x3=素数 a≠2,b≠3,c≠5 e^(i*2π*(x1/(3*5^2)^3+x2/(2*5^2)^3))=e^(i*2π*(x3/(2*3*5)^3)) x1 = 8, x2 = -7, x3 = -1 e^(i*2π*(8/(3*5^2)^3-7/(2*5^2)^3))=e^(i*2π*(1/(2*3*5)^3)) e^(i*2π*(9/(3*5^2)^3-7/(2*5^2)^3))=e^(i*2π*(13/(2*3*5)^3)) e^(i*2π*(8/(3*5^2)^3-5/(2*5^2)^3))=e^(i*2π*(-71/(2*3*5)^3)) ←ずらすのが容易になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/346
347: 132人目の素数さん [sage] 2024/01/04(木) 00:56:35.97 ID:HQkE/6B8 a^n+b^n≠c^n (a,b,c,は互いに素) n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる x1=x2=x3にならない(x1=x2=x3=0を除く) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n)) ←が成り立つとするx1≠x2≠x3 x3 = -(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n+(x1-x3)/(a*b)^n))=e^(i*2π*(x3/(a*b)^n+(x1-x3)/(a*b)^n)))=e^(i*2π*(x1/(a*b)^n)) x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nであることを示せばいい x2/(a*c)^n+(x1-(-(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π)))/(a*b)^n=x1/(a*c)^n x1 (a b)^(-n) - x1 (b c)^(-n) - c_1 = x1 (a c)^(-n) (a b)^n (a c)^n Subscript["c", 1] == (a c)^n x1 + ((a b)^n (-2 Pi x1 + 2 Pi x2 + I (a c)^n Log[E^(((2 I) Pi x1)/(b c)^n + ((2 I) Pi x2)/(a c)^n)]))/(2 Pi)←n>=3以上のときc1≠0のため x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nになるためa^n+b^n≠c^n http://rio2016.5ch.net/test/read.cgi/math/1640355175/347
348: 132人目の素数さん [sage] 2024/01/04(木) 01:13:55.61 ID:HQkE/6B8 (3 4)^2 (3 5)^2 *C = (3 5)^2 x1 + ((3 4)^2 (-2 Pi x1 + 2 Pi x2 + I (3 5)^2 Log[E^(((2 I) Pi x1)/(4 5)^2 + ((2 I) Pi x2)/(3 5)^2)]))/(2 Pi) 32400 C = (16200 i log(e^((i π x1)/200 + (2 i π x2)/225)))/π + 81 x1 + 144 x2=0 ←n=2 a=3,b=4,c=5のときC=0のため3^2+4^2=5^2 (3 4)^3 (3 5)^3 *C = (3 5)^3 x1 + ((3 4)^3 (-2 Pi x1 + 2 Pi x2 + I (3 5)^3 Log[E^(((2 I) Pi x1)/(4 5)^3 + ((2 I) Pi x2)/(3 5)^3)]))/(2 Pi) 5832000 C - 918 x1 = 0 ←n=3 a=3,b=4,c=5のときC≠0のため3^3+4^3≠5^3 http://rio2016.5ch.net/test/read.cgi/math/1640355175/348
349: 132人目の素数さん [sage] 2024/01/04(木) 01:42:18.75 ID:HQkE/6B8 n>=3のときC=0を満たす、x1=x2、a,b,c,の整数が存在しない C=(a c)^n x1 + ((a b)^n (-2 Pi x1 + 2 Pi x2 + I (a c)^n Log[E^(((2 I) Pi x1)/(b c)^n + ((2 I) Pi x2)/(a c)^n)]))/(2 Pi) =((a c)^n (2 π x1 + i (a b)^n log(e^(2 i π x1 ((a c)^(-n) + (b c)^(-n))))))/(2 π) =(2 π + i (a b)^n log(e^(2 i π ((a c)^(-n) + (b c)^(-n))))) ←が0になればa^n+b^n=c^nを満たす x1=1にする (2 π + i (3 4)^2 log(e^(2 i π ((3 5)^(-2) + (4 5)^(-2)))))=0 のためn=2 のときa=3 b=4 c=5 (2 π + i (3 4)^3 log(e^(2 i π ((3 5)^(-3) + (4 5)^(-3)))))=(68 π)/125のため3^3+4^3≠5^3 http://rio2016.5ch.net/test/read.cgi/math/1640355175/349
350: 132人目の素数さん [sage] 2024/01/04(木) 01:46:40.11 ID:HQkE/6B8 f(n)=(2 π + i (a b)^n log(e^(2 i π ((a c)^(-n) + (b c)^(-n))))) f(n)のnが3より大きいときf(n)=0をみたすa,b,cの格子点を通らないため(同時に整数にならないため) n>=3のときa^n+b^n≠c^n http://rio2016.5ch.net/test/read.cgi/math/1640355175/350
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.018s