素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
455: 132人目の素数さん [sage] 2024/01/26(金) 22:04:52.17 ID:Dz6ppHM6 > 2*3*((1/2+2/3)mod1)=1 > 2*3*5*((1/2+1/3+1/5)mod1)=1 > 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 > 2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1 > 2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 > 2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 > 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 > 2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1 > 2*3*5*7*11*13*17*19*23*31*((1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=1 > > 2*3*5*7*11*13*17*19*23*31*(31*(1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=31 > > 2*3*5*7*11*13*17*19*23*31*((1/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19+14*31/23+26*31/31)mod1)=31 > > 2*3*5*7*11*13*17*19*23*31*((31/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19+14*31/23)mod1)=31 > > 2*3*5*7*11*13*17*19*23*((1/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19)mod1)=1 > > 2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1 > > 2*3*5*7*11*13*17*19*23*(23*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=23 > > 2*3*5*7*11*13*17*19*((23/2+2*23/3+4*23/5+3*23/7+7*23/11+7*23/13+14*23/17+14*23/19)mod1)=1 > > 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 > > 無限に繰り返すと↓に収束する > 2*3*((1/2+2/3)mod1)=1 > http://rio2016.5ch.net/test/read.cgi/math/1640355175/455
456: 132人目の素数さん [sage] 2024/01/26(金) 22:18:42.00 ID:Dz6ppHM6 P(k)=k番目の素数 1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけて1になるとき 2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=1のとき a2*Π(k=3~n)P(k) mod 3=2になる ←3の分子に3からn番目の素数をかけて3で割ると2になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/456
457: 132人目の素数さん [sage] 2024/01/26(金) 22:31:40.45 ID:Dz6ppHM6 P(k)=k番目の素数 1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけて1になるとき 2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=1のとき ak*Π(m=1~n(kを除く))P(m) mod P(k)=1になる ←k番目の素数の分子にk番目を除く1からn番目の素数をかけてk番目の素数で割るとすべて1になる > 2*3*5*7*11*13*17*19*23*31*((1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=1 23に関して試すと14/23のため 分子ak=14 14*2*3*5*7*11*13*17*19*31 mod 23 =1 17に関して試すと1/17のため 分子ak=1 2*3*5*7*11*13*19*23*31 mod 17=1 http://rio2016.5ch.net/test/read.cgi/math/1640355175/457
458: 132人目の素数さん [sage] 2024/01/26(金) 22:48:00.43 ID:Dz6ppHM6 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=1 (12)*2*3*5*7*11*13*17*19*23 mod 29 =1 (11)*2*3*5*7*11*13*17*19*29 mod 23 =1 (4)*2*3*5*7*11*13*19*23*29 mod 17 =1 http://rio2016.5ch.net/test/read.cgi/math/1640355175/458
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.020s