素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

218: 2023/12/13(水)00:01 ID:8cxE3ENL(1/3) AAS
e^(i*2pi*((2*3+1)/2^2+(3*3+2)/3^2+(5*3+4)/5^2+(7*3+8)/7^2+(11*3+16)/11^2))=e^(-(1445989 i π)/2668050)
e^(i*2pi*((2*9+1)/2^2+(3*9+2)/3^2+(5*9+4)/5^2+(7*9+8)/7^2+(11*9+16)/11^2))=e^((1769531 i π)/2668050)
e^(i*2pi*((2*27+1)/2^2+(3*27+2)/3^2+(5*27+4)/5^2+(7*27+8)/7^2+(11*27+16)/11^2))=e^((743891 i π)/2668050)
219: 2023/12/13(水)19:15 ID:8cxE3ENL(2/3) AAS
((a^(n-1))+(a^n-a^(n-1)))*((b^(n-1))+(b^n-b^(n-1)))*((c^(n-1))+(c^n-c^(n-1)))

aとbとcを素因数にもつ個数=(a^(n-1))*(b^(n-1))*(c^(n-1))
aとbとcを素因数にもたない個数=(a^n-a^(n-1))*(b^n-b^(n-1))*(c^n-c^(n-1))
1から(1からn番目の素数の積)^nの間の素数の個数=Π(P(k)^n-P(k)^(n-1)) - (n+1番目以上の素数の積の個数)
220: 2023/12/13(水)19:18 ID:8cxE3ENL(3/3) AAS
1から(1からn番目の素数の積)^nの間の素数の個数=Π(P(k)^n-P(k)^(n-1)) - (n+1番目以上の素数の積の個数)+(n-1)
(n+1番目以上の素数の積の個数)=P(n+1)^2、P(n+1)*P(n+2)、P(n+2)^2、P(n+1)*P(n+3)、・・・
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.665s*