素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
321(1): 2024/01/01(月)00:52 ID:7BKpZ/zg(1/15) AAS
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-3/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2*1/3^s+3/4^s+1/5^s-2*1/6^s+1/7^s+3/8^s-2*1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m)=1がm-1回連続し、-mが1回でる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える
Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ
322: 2024/01/01(月)01:14 ID:7BKpZ/zg(2/15) AAS
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える
Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ]
(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため
省9
323: 2024/01/01(月)02:30 ID:7BKpZ/zg(3/15) AAS
Σ1/(2n-1)^s-Σ1/(2n)^s=0 ← Σ1/(4n-2)^s=Σ1/(4n)^s
↓に代入すると
Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0
Σ1/(4n-2)^s=1/2×(Σ1/(4n-3)^s+Σ1/(4n-1)^s)
x=1/2のときのみ成り立つことを示す
324: 2024/01/01(月)11:26 ID:7BKpZ/zg(4/15) AAS
ζ(-1+i*0)=1+1/2^(-1+i*0)+1/3^(-1+i*0)+1/4^(-1+i*0)+5^(1-(1/2+i*0))/(-1+i*0-1)+5^(-(-1+i*0))/2 ←0
+1/6*1/2!*5^(1-(-1+i*0)-2)*(-1+i*0) ←-1/12
-1/30*1/4!*5^(1-(-1+i*0)-4)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2) ←0
+1/42*1/6!*5^(1-(-1+i*0)-6)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2)*(-1+i*0+3)*(-1+i*0+4) ←0
+1/R2k
ζ(-1+i*0)=Σn=1+2+3+4+5+・・・=-1/12
325: 2024/01/01(月)12:05 ID:7BKpZ/zg(5/15) AAS
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
Σ1/(6n-4)^s+Σ1/(6n-2)^s-2*Σ1/(6n)^s=0
Σ1/(6n-5)^s+Σ1/(6n-4)^s+*Σ1/(6n-3)^s+Σ1/(6n-2)^s+Σ1/(6n-1)^s-5*Σ1/(6n)^s=0
Σ1/(6n-5)^s+Σ1/(6n-3)^s+Σ1/(6n-1)^s-7*Σ1/(6n)^s=0 ←これもs=1/2+i*yのときのみ満たす
326: 2024/01/01(月)14:57 ID:7BKpZ/zg(6/15) AAS
Σ1/(n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(n)^s
Σ1/(2n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(2n)^s
Σ1/(2n-1)^s =1/(1-1/(2)^(s-1))*(Σ(-1)^(n-1)/(n)^s-Σ(-1)^(n-1)/(2n)^s)
Σ1/(2n-1)^s =(1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(2n)^(s)))
Σ1/(2n-1)^s =1+1/√3+1/√5+1/√7+・・・≒-0.42
327: 2024/01/01(月)15:15 ID:7BKpZ/zg(7/15) AAS
(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)=(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)
=Σ(n=1〜∞) 1/(3n)^(s)-2*Σ(n=1〜∞) 1/(6n)^(s)=Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(3n)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(mn)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s)=ζ(s)/m^s ←合成数mnのみのゼータ関数は収束する
328: 2024/01/01(月)15:29 ID:7BKpZ/zg(8/15) AAS
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
Σ1/(n)^s-Σ1/(3n)^s=Σ1/(3n-2)^s+Σ1/(3n-1)^s
Σ(n=1〜∞) 1/(3n-2)^(s)+Σ(n=1〜∞) 1/(3n-1)^(s)=1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))
1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0 ←s=1/2+i*yのときのみ満たす
329: 2024/01/01(月)15:34 ID:7BKpZ/zg(9/15) AAS
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 3*(Σ(n=1〜∞) (-1)^(n-1)/(3n)^(1/2+i*14.1347))=6.82869×10^-6 - 0.000128656 i ←ほぼ0になる
330(1): 2024/01/01(月)15:40 ID:7BKpZ/zg(10/15) AAS
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*y)) - m*(Σ(n=1〜∞) (-1)^(n-1)/(mn)^(1/2+i*y)) ←1/2+i*yがゼロ点のときmに整数を入れるとほぼ0になる
1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s) ←1/(1-1/2^(s-1))は値を補正する項なもののゼロ点の時無視できるため
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 4*(Σ(n=1〜∞) (-1)^(n-1)/(4n)^(1/2+i*14.1347))=0.0000654354 + 0.0000182958 i
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 5*(Σ(n=1〜∞) (-1)^(n-1)/(5n)^(1/2+i*14.1347))=-0.0000801562 - 0.000119567 i
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 125*(Σ(n=1〜∞) (-1)^(n-1)/(125n)^(1/2+i*14.1347))=-0.000385263 + 0.000318602 i
331: 2024/01/01(月)20:57 ID:7BKpZ/zg(11/15) AAS
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347251417346937904572519835624702707842)) - 10000*(Σ(n=1〜∞) (-1)^(n-1)/(10000n)^(1/2+i*14.1347251417346937904572519835624702707842))
=-0.×10^-38 + 0.×10^-38 i ←ゼロ点の精度が上がるほど0に近づく
332: 2024/01/01(月)22:23 ID:7BKpZ/zg(12/15) AAS
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^s)=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^s)=1/(1-1/3^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s)=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
(Σ(n=1〜∞)(-1)^(n-1)*1/n^s))=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^s))=(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s))=(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
省6
333: 2024/01/01(月)22:43 ID:7BKpZ/zg(13/15) AAS
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))==(Σ(n=1〜∞)1/(2n-1)^s)-(Σ(n=1〜∞)1/(2n)^s)
(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
=(Σ(n=1〜∞)1/(n)^s)-2*(Σ(n=1〜∞)1/(2n)^s)=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-2*(Σ(n=1〜∞)(-1)^(n-1)/(2n)^s))
334: 2024/01/01(月)23:02 ID:7BKpZ/zg(14/15) AAS
mに任意の整数を入れ、sがゼロ点の時
(Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-m*(Σ(n=1〜∞)(-1)^(n-1)/(mn)^s)=0になる←(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)を正規化
(Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/s)*n)^s)
m^(1-1/s)*nのmとn(次数1)の次数が等しくなるためにはs=1/2+i*yである必要がある
(1-1/(1/2+i*y))=(2 y + i)/(2 y - i) ←|(2 y + i)/(2 y - i)|=1のため次数1
335: 2024/01/01(月)23:53 ID:7BKpZ/zg(15/15) AAS
zetazero(k)=k番目の非自明なゼロ点
m、kにどの整数を入れても0になる
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(k))-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/zetazero(k))*n)^zetazero(k))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(1))-(Σ(n=1〜∞)(-1)^(n-1)/(2^(1-1/zetazero(1))*n)^zetazero(1))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(2))-(Σ(n=1〜∞)(-1)^(n-1)/(31^(1-1/zetazero(2))*n)^zetazero(2))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(12))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/zetazero(12))*n)^zetazero(12))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^(1/10+zetazero(12)))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/(1/10+zetazero(12)))*n)^(1/10+zetazero(12)))≒-4.49761 + 2.32023 i ←1/2からずれるとゼロ点にならない
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.029s