素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
185: 2023/10/22(日)11:17 ID:1rLOY4nu(1/11) AAS
cos(2pi*(1-(1-(1-n/(2*3))*2*3)/(2*3)^5)) > cos(2pi*(25/(2*3)^5))
n = 7776 m, m element Z
n = 27 (288 m + 1), m element Z
n = 24 (324 m + 1), m element Z
n = 18 (432 m + 1), m element Z
n = 18 (432 m + 431), m element Z
e^(i*2pi*(1-(1-(1-27/(2*3))*2*3)/(2*3)^5))=e^(-(11 i π)/1944)
省3
186: 2023/10/22(日)11:32 ID:1rLOY4nu(2/11) AAS
cos(2pi*(1-((n+1/(2*3))*2*3)/(2*3)^3)) > cos(2pi*(25/(2*3)^3))
n = 36 m, m element Z
n = 4 (9 m + 8), m element Z
n = 3 (12 m + 1), m element Z
n = 3 (12 m + 11), m element Z
n = 2 (18 m + 1), m element Z
e^(i*2pi*(1-((32+1/(2*3))*2*3)/(2*3)^3)) =e^((23 i π)/108)
省3
187: 2023/10/22(日)11:32 ID:1rLOY4nu(3/11) AAS
cos(2pi*(1-((n+1/(2*3))*2*3)/(2*3)^3)) > cos(2pi*(25/(2*3)^3))
n = 36 m, m element Z
n = 4 (9 m + 8), m element Z
n = 3 (12 m + 1), m element Z
n = 3 (12 m + 11), m element Z
n = 2 (18 m + 1), m element Z
e^(i*2pi*(1-((32+1/(2*3))*2*3)/(2*3)^3)) =e^((23 i π)/108)
省3
188: 2023/10/22(日)11:35 ID:1rLOY4nu(4/11) AAS
cos(2pi*(1-((n+1/(2*3*5))*2*3*5)/(2*3*5)^3)) > cos(2pi*(49/(2*3*5)^3))
n = 900 m, m element Z
n = 900 m + 1, m element Z
n = 900 m + 899, m element Z
e^(i*2pi*(1-((1+1/(2*3*5))*2*3*5)/(2*3*5)^3)) =e^(-(31 i π)/13500)
e^(i*2pi*(1-((899+1/(2*3*5))*2*3*5)/(2*3*5)^3)) =e^((29 i π)/13500)
189: 2023/10/22(日)11:39 ID:1rLOY4nu(5/11) AAS
cos(2pi*(1-((n/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6)) > cos(2pi*(121/(2*3*5*7)^6))
n = 2858870700000 m, m element Z
n = 4 (714717675000 m + 714717674999), m element Z
n = 3 (952956900000 m + 1), m element Z
n = 3 (952956900000 m + 1), m element Z
n = 2 (1429435350000 m + 1), m element Z
e^(i*2pi*(1-((4*714717674999/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^((113 i π)/42883060500000)
190: 2023/10/22(日)11:45 ID:1rLOY4nu(6/11) AAS
e^(i*2pi*(1-((3/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^(-(97 i π)/42883060500000)
e^(i*2pi*(1-((2/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^(-(67 i π)/42883060500000)
cos(2pi*(1-((n/(11*3)+1/(2*5*7))*2*3*5*7*11)/(2*3*5*7*11)^6)) > cos(2pi*(169/(2*3*5*7*11)^6))
n = 2170570215498300000 m, m element Z
n = 2 (1085285107749150000 m + 1085285107749149999), m element Z
n = 2170570215498300000 m + 1, m element Z
n = 2170570215498300000 m + 2170570215498299999, m element Z
省3
191: 2023/10/22(日)11:53 ID:1rLOY4nu(7/11) AAS
cos(2pi*(1-((n/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) > cos(2pi*(289/(2*3*5*7*11*13)^7))
n = 104874047791504330586247000000 m, m element Z
n = 2 (52437023895752165293123500000 m + 52437023895752165293123499999), m element Z
n = 104874047791504330586247000000 m + 104874047791504330586246999999, m element Z
e^(i*2pi*(1-((52437023895752165293123499999/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) =e^((277 i π)/11011775018107954711555935000000)
e^(i*2pi*(1-((104874047791504330586246999999/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) =e^((67 i π)/11011775018107954711555935000000)
192: 2023/10/22(日)11:58 ID:1rLOY4nu(8/11) AAS
cos(2pi*(1-((n/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) > cos(2pi*(289/(2*3*5*7*11*13)^7))
n = 98 (1070143344811268679451500000 m + 1070143344811268679451499999), m element Z
n = 104874047791504330586247000000 m + 104874047791504330586246999903, m element Z
e^(i*2pi*(1-((98*1070143344811268679451499999/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) =e^((131 i π)/11011775018107954711555935000000)
e^(i*2pi*(1-((104874047791504330586246999903/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) =e^(-(79 i π)/11011775018107954711555935000000)
193: 2023/10/22(日)14:24 ID:1rLOY4nu(9/11) AAS
cos(2pi*(1-((n/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) > cos(2pi*(23^2/(2*3*5*7*11*13*17*19)^7))
n = 399 (96407937365467087673718025140163334691000000 m + 28140716575350032665769627724873739650774217), m element Z
n = 8 (4808345876102670997726686503865646317713625000 m + 1403518239195582879205260182778077765082364073), m element Z
n = 5 (7693353401764273596362698406185034108341800000 m + 2245629182712932606728416292444924424131782517), m element Z
n = 2 (19233383504410683990906746015462585270854500000 m + 5614072956782331516821040731112311060329456291), m element Z
n = 38466767008821367981813492030925170541709000000 m + 11228145913564663033642081462224622120658912581, m element Z
e^(i*2pi*(1-((8*1403518239195582879205260182778077765082364073/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) =e^(-(229 i π)/4039010535926243638090416663247142906879445000000)
省3
194: 2023/10/22(日)14:35 ID:1rLOY4nu(10/11) AAS
cos(2pi*(1-((n/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) > cos(2pi*(29^2/(2*3*5*7*11*13*17*19*23)^7))
n = 864 (151588688860480401830821308882900152330122196839031250 m + 57736288309081718076562795675036302431140590123061457), m element Z
n = 350 (374207506215585906233798888213787804609215937339780000 m + 142526151711561726909000729894946758001444199618071711), m element Z
n = 69 (1898154017035580683794632041664141037872834464767000000 m + 722958740565892817654351528452628482616021302410508679), m element Z
n = 15 (8731508478363671145455307391655048774215038537928200000 m + 3325610206603106961210017030882091020033697991088339923), m element Z
n = 4 (32743156793863766795457402718706432903306394517230750000 m + 12471038274761651104537563865807841325126367466581274711), m element Z
e^(i*2pi*(1-((864*57736288309081718076562795675036302431140590123061457/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^(-(83 i π)/13752125853422782054092109141856701819388685697236915000000)
省3
195: 2023/10/22(日)14:35 ID:1rLOY4nu(11/11) AAS
e^(i*2pi*(1-((4*12471038274761651104537563865807841325126367466581274711/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^((757 i π)/13752125853422782054092109141856701819388685697236915000000)
P(k)がk番目の素数の時
cos(2pi*(1-((n/(11からP(k)の積)^11+1/(2*5*7*3))*2*3*5*7*(11からP(k)の積)^11)/(2からP(k)の積)^7)) > cos(2pi*(P(k+1)^2/(2からP(k)の積)^7))
をみたす整数nがあるとき
e^(i*2pi*(1-((n/(11からP(k)の積)^11+1/(2*5*7*3))*2*3*5*7*(11からP(k)の積)^11)/(2からP(k)の積)^7)) の指数の分子はP(k+1)^2未満の素数
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.025s