素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 レス栞

107: 2022/11/26(土)00:31:35.85 ID:pIQXpZJr(2/5) AAS
大きさが大小様々な多角形ができるが中心点はx=1/2上にある
ゼータ関数がゼロの時無限大の多角形ができる
そこからいくつかの整数を抜き出しても多角形ができる
その中心点と非自明なゼロ点は一致する
212: 2023/12/10(日)22:50:09.85 ID:ASmhxKZP(1) AAS
素数aがある
1≦X≦a^nの範囲でaを素因数に持つものと持たないものに分ける

aを素因数に持つ個数=(a^(n-1))
aを素因数に持たない個数=(a^n-a^(n-1))=(1-1/a)*(1+1/1!*(n*ln(n))+1/2!*(n*ln(n))^2+1/3!*(n*ln(n))^3+・・・)=(1-1/a)*Σ(n*ln(a))^k/k!=(1-1/a)*e^(n*ln(a))

a^n以下でaを素因数を持たない個数を小さいほうの素数から順番にかける
Π(1-1/a)*e^(n*ln(a))=(1-1/2)*e^(n*ln(2))*(1-1/3)*e^(n*ln(3))*(1-1/5)*e^(n*ln(5))*・・・*(1-1/m)*e^(n*ln(m))=(1-1/2)*(1-1/3)*・・・(1-1/m)*e^(n*(ln(2)+ln(3)+ln(5)+・・・+ln(m)))

Π(1-1/a)*e^(n*ln(a))=1/ζ(1)*e^(n*(ln(2)+ln(3)+ln(5)+・・・+ln(m)))
省4
327: 2024/01/01(月)15:15:03.85 ID:7BKpZ/zg(7/15) AAS
(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)=(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)
=Σ(n=1〜∞) 1/(3n)^(s)-2*Σ(n=1〜∞) 1/(6n)^(s)=Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(3n)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)

Σ(n=1〜∞) 1/(mn)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s)=ζ(s)/m^s ←合成数mnのみのゼータ関数は収束する
651: 2024/10/19(土)11:55:37.85 ID:HSWAHRFC(2/3) AAS
a^1!/(a*(1*2*3*4*・・・*a^0)) mod a = -1 ←(a-1)! mod a=-1
a^2!/(a*(1*2*3*4*・・・*a^1)) mod a^2 = -1
a^3!/(a*(1*2*3*4*・・・*a^2)) mod a^3 = 1
a^k!/(a*(1*2*3*4*・・・*a^k)) mod a^k = 1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.023s